ijms-logo

Journal Browser

Journal Browser

Drug Discovery: Natural Products and Compounds

A special issue of International Journal of Molecular Sciences (ISSN 1422-0067). This special issue belongs to the section "Molecular Pharmacology".

Deadline for manuscript submissions: 15 October 2025 | Viewed by 696

Special Issue Editors


E-Mail Website
Guest Editor
Department of Excellence of Pharmacy, University of Naples Federico II, Via D. Montesano, 49, 80131 Naples, Italy
Interests: organic chemistry; analytical chemistry; antivirals; nutraceuticals; food chemistry
Special Issues, Collections and Topics in MDPI journals

E-Mail Website
Guest Editor
Department of Pharmacy, University of Naples Federico II, Via Domenico Montesano 49, 80131 Naples, Italy
Interests: biomarkers; mass spectrometry; metabolomics; nutraceuticals; natural products; chromatography; cutaneous comorbidities complication
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

This Special Issue aims to highlight recent advances in drug discovery from natural products and bioactive compounds. Given their chemical diversity and biological activity, natural products from medicinal plants, marine organisms, and microorganisms continue to offer valuable scaffolds for the development of novel therapeutics against cancer, infections, inflammation, and metabolic diseases.

This Special Issue aims to gather high-quality research and review articles on the identification, structural characterization, biological evaluation, and molecular mechanisms of natural compounds. We particularly encourage studies involving advanced analytical techniques, in silico modeling, biosynthesis, synthetic modification, and innovative delivery systems. Topics such as metabolomics, dereplication, structure–activity relationship (SAR) studies, cheminformatics, sustainable sourcing, and biotechnological production are also of great interest. Interdisciplinary approaches integrating pharmacokinetics, toxicology, target identification, and system biology to elucidate mechanisms of action are especially valued. By providing a multidisciplinary dialog, this Special Issue aims to advance the field of natural product-based drug discovery and support the translation of natural compounds into effective therapeutic agents.

This Special Issue is supervised by Prof. Dr. Vincenzo Summa and Prof. Dr. Maria Maisto, with the assistance of our Topical Advisory Panel Member Dr. Vincenzo Piccolo (University of Naples Federico II, https://www.mdpi.com/journal/ijms/topical_advisory_panel?search=Vincenzo+Piccolo).

Prof. Dr. Vincenzo Summa
Dr. Maria Maisto
Dr. Vincenzo Piccolo
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. International Journal of Molecular Sciences is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. There is an Article Processing Charge (APC) for publication in this open access journal. For details about the APC please see here. Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • natural products
  • drug discovery
  • bioactive compounds
  • phytochemicals
  • marine natural compounds
  • microorganisms
  • structure–activity relationships (SARs)
  • pharmacological activity
  • cheminformatics
  • metabolomics

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • Reprint: MDPI Books provides the opportunity to republish successful Special Issues in book format, both online and in print.

Further information on MDPI's Special Issue policies can be found here.

Published Papers (1 paper)

Order results
Result details
Select all
Export citation of selected articles as:

Research

13 pages, 2783 KiB  
Article
Eggplant (Solanum spp.) Fruits Dietary Polyphenols Upregulate the Expression of Glucose Transporter Protein in Palmitate-Induced Diabetic Cell Line C2C12
by Esther E. Nwanna, Emmanuel Mukwevho, Emmanuel Okello, Ademola O. Ayeleso, Emmanuel O. Ibukun and Ganiyu Oboh
Int. J. Mol. Sci. 2025, 26(16), 7762; https://doi.org/10.3390/ijms26167762 - 11 Aug 2025
Viewed by 238
Abstract
Studies utilizing cell-based systems to investigate plant-based diets for diabetes management are gaining attention due to the adverse effects associated with commercially available drugs. However, the molecular mechanisms underlying the anti-diabetic effects of specific plant-derived products remain inadequately explored. The major aim of [...] Read more.
Studies utilizing cell-based systems to investigate plant-based diets for diabetes management are gaining attention due to the adverse effects associated with commercially available drugs. However, the molecular mechanisms underlying the anti-diabetic effects of specific plant-derived products remain inadequately explored. The major aim of our study was to elucidate the molecular mechanisms by which bioactive compounds in the fruit of Solanum spp. influence key proteins associated with type 2 diabetes. The expressions of genes such as glucose transporter protein 4 (GLUT4), myocyte enhancer factor-2 (MEF-2A), and nuclear respiratory factor-1 (NRF-1) were investigated in a palmitate-induced C2C12 cell model of type 2 diabetes mellitus. The structures of these proteins were retrieved from the protein database, while bioactive compounds previously identified in Solanum spp. were obtained from PubChem site. Drug-likeness properties of these compounds (ligands) were assessed. The docked protein-ligand complexes were further analyzed using the Protein-Ligand Profiler web server. Our results showed that the studied compounds from Solanum spp. profoundly upregulated GLUT4 expression (9–19-fold increase) in the C2C12 cell line, thus surpassing the effects of the standard anti-diabetic drug metformin. Additionally, activities of antioxidant enzymes catalase, superoxide dismutase, and glutathione peroxidase were elevated. Molecular docking showed that rutin, an abundant flavonoid from Solanum spp., had the highest binding affinity for the active sites of the target proteins. These findings provide new mechanistic insight into the anti-diabetic effects of Solanum spp., primarily due to its high rutin content, which plays a major role in the plant’s glucose-regulating and antioxidant actions. Our findings underscore the potential use of Solanum spp. as an affordable functional food for managing type 2 diabetes, especially in developing countries with limited resources for purchasing drugs. Although promising, our findings should be further validated by clinical studies. Full article
(This article belongs to the Special Issue Drug Discovery: Natural Products and Compounds)
Show Figures

Graphical abstract

Back to TopTop