ijms-logo

Journal Browser

Journal Browser

Cytotoxicity of the Nanoparticles

A special issue of International Journal of Molecular Sciences (ISSN 1422-0067). This special issue belongs to the section "Molecular Toxicology".

Deadline for manuscript submissions: closed (15 September 2024) | Viewed by 1456

Special Issue Editor


E-Mail Website
Guest Editor
Division of Applied Food Science, Major of Food Science & Technology, Seoul Women's University, 621 Hwarang-ro, Nowon-gu, Seoul 01797, Republic of Korea
Interests: nanoparticles; food toxicants; toxicity; toxicokinetics; mechanism; interactions
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

Many nanoparticles are widely applied to biological fields, such as medicine, drugs, cosmetics, and foods, which raises concerns about their potential toxicity related to their small size, high reactivity, and unpredictable biological responses.

This Special Issue will focus on the cytotoxicity of nanoparticles, including inflammation responses, oxidative stress, genotoxicity, cytotoxicity mechanism, signaling pathway responsible for cytotoxicity, trafficking pathway, intracellular fate, and others. In particular, in vitro genotoxicity of titanium dioxide nanoparticles will be welcome.

Prof. Dr. Soo-Jin Choi
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. International Journal of Molecular Sciences is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. There is an Article Processing Charge (APC) for publication in this open access journal. For details about the APC please see here. Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • nanoparticles
  • cytotoxicity
  • inflammation
  • oxidative stress
  • genotoxicity
  • mechanism
  • signaling pathway
  • trafficking
  • fate

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • e-Book format: Special Issues with more than 10 articles can be published as dedicated e-books, ensuring wide and rapid dissemination.

Further information on MDPI's Special Issue policies can be found here.

Published Papers (1 paper)

Order results
Result details
Select all
Export citation of selected articles as:

Research

13 pages, 739 KiB  
Article
Cytokinesis-Blocking Micronucleus Assay for Assessing Nuclear Chromatin Integrity Abnormalities in Dog’s Somatic Cells After Exposure to HVAD-Produced Silver Nanoparticles
by Anna Grzesiakowska-Dul, Marek Jan Kasprowicz, Agnieszka Otwinowska-Mindur, Przemysław Baran and Marta Kuchta-Gładysz
Int. J. Mol. Sci. 2024, 25(23), 12691; https://doi.org/10.3390/ijms252312691 - 26 Nov 2024
Viewed by 811
Abstract
The widespread use of silver nanoparticles in many industries is increasing every year. Along with this use, there is growing concern about the potential unintentional exposure of human and animal organisms to these nanomaterials. It has been shown that AgNPs have the ability [...] Read more.
The widespread use of silver nanoparticles in many industries is increasing every year. Along with this use, there is growing concern about the potential unintentional exposure of human and animal organisms to these nanomaterials. It has been shown that AgNPs have the ability to penetrate organisms and can have harmful effects on cells and organs in the body. In order to reduce the effects of AgNPs on living organisms, newer solutions are being investigated, such as particle stabilization or other methods of synthesizing these particles. The physical synthesis of AgNPs using high-voltage arc discharge (HVAD) may be one of these alternatives. To determine the effect of silver nanoparticles obtained by this method, cytogenetic analysis was performed on domestic dog somatic cells using a cytokinesis-blocking micronucleus assay. In the experiments performed, peripheral blood cells of the domestic dog were exposed in vitro for 3 and 24 h to three tested colloidal silver compounds (unstable AgNP-HVAD, sodium citrate-stabilized silver nanoparticles—AgNP+C, and silver nitrate). The toxicity of these compounds was evaluated at concentrations of 5, 10, and 20 µg/L, and the presence of the following cellular abnormalities was analyzed: micronuclei, nuclear buds, nucleoplasmic bridges, or multinucleated cells. The study showed a significant increase in the number of micronuclei compared to the control sample, as well as the presence of nuclear buds and nucleoplasmic bridges in somatic cells of the domestic dog, confirming the genotoxic nature of the particles. However, there was no cytotoxic effect due to the lower number of multinucleated cells and the absence of apoptotic or necrotic cells in the samples analyzed. Further studies are needed to better understand the mechanisms of toxicity of AgNPs produced by the HVAD method and the extent of their effects on mammalian somatic cells. Full article
(This article belongs to the Special Issue Cytotoxicity of the Nanoparticles)
Show Figures

Figure 1

Back to TopTop