ijms-logo

Journal Browser

Journal Browser

Molecular Toxicology on the Environmental Impact of Pharmaceuticals

A special issue of International Journal of Molecular Sciences (ISSN 1422-0067). This special issue belongs to the section "Molecular Toxicology".

Deadline for manuscript submissions: 31 July 2025 | Viewed by 4130

Special Issue Editor


E-Mail Website
Guest Editor
Department of Analytical Chemistry, Medical University of Lodz, Muszynskiego 1, 90-151 Lodz, Poland
Interests: pharmacology; environmental toxicology; liquid chromatography; drug-protein interactions; in silico studies; biological activity of plants; analysis of pharmaceutical and cosmetic preparations
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

Pharmaceutic and cosmetic preparations play a crucial role in maintaining the health and well-being of humans and animals; however, the components of such preparations pollute surface waters, soil, and air, and are unwillingly absorbed by individuals who are often unaware of such exposure; many cosmetic and pharmaceutical raw materials undergo degradation processes in soil or water, leading to products that can also be considered environmental contaminants. Such compounds are often persistent in the environment and can travel long distances from the point of discharge. The results of contact of humans and animals with such undesired substances are, e.g., developmental pathologies, some types of cancer, reproductive problems, and malfunctions of the central nervous systems.

The focus of this Special Issue will be on pharmaceutics (related to both human and veterinary medicine) and cosmetic products/compounds, as well as their metabolites, in humans and the environment. The focus will be on the toxicological effects of pharmacological and cosmetic products/compounds, and their metabolites, on humans and animals, as well as the related molecular mechanisms. Original research papers and reviews on the molecular mechanisms and properties governing the behaviors of drugs and cosmetic raw materials (including their metabolites and degradation products) in the environment are especially welcome.

Dr. Anns Sobańska
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. International Journal of Molecular Sciences is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. There is an Article Processing Charge (APC) for publication in this open access journal. For details about the APC please see here. Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • pharmaceutic
  • cosmetic preparations
  • cosmetic products
  • cosmetic compounds
  • molecular mechanisms
  • environmental toxicity and/or persistence
  • mobility in soil/water compartment
  • bioconcentration or bioaccumulation

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • e-Book format: Special Issues with more than 10 articles can be published as dedicated e-books, ensuring wide and rapid dissemination.

Further information on MDPI's Special Issue policies can be found here.

Published Papers (4 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

27 pages, 4199 KiB  
Article
Impact of the Technical Snow Production Process on Bacterial Community Composition, Antibacterial Resistance Genes, and Antibiotic Input—A Dual Effect of the Inevitable
by Klaudia Stankiewicz, Klaudia Bulanda, Justyna Prajsnar and Anna Lenart-Boroń
Int. J. Mol. Sci. 2025, 26(6), 2771; https://doi.org/10.3390/ijms26062771 - 19 Mar 2025
Viewed by 421
Abstract
Although climate warming-induced snow cover reduction, as well as the development of ski tourism in hot and dry countries, is shifting industries toward the use of technical snowmaking, its use raises hydrological, health-related, and environmental concerns. This study was aimed at enhancing our [...] Read more.
Although climate warming-induced snow cover reduction, as well as the development of ski tourism in hot and dry countries, is shifting industries toward the use of technical snowmaking, its use raises hydrological, health-related, and environmental concerns. This study was aimed at enhancing our current understanding of the impact of technical snowmaking on the environment and human health. Culturable bacteriological indicators of water quality (Escherichia coli, fecal enterococci, Salmonella, and Staphylococcus), the presence and concentration of antimicrobials, genes determining bacterial antibiotic resistance (ARGs), and next-generation sequencing-based bacterial community composition and diversity were examined from river water, technological reservoirs, and technical snow from five ski resorts. The number of culturable bacteria and prevalence of most ARGs decreased during snowmaking. The concentration of antimicrobial agents changed irregularly, e.g., ofloxacin and erythromycin dropped in the snowmaking process, while cefoxitin was quantified only in technical snow. The bacterial community composition and diversity were altered through the technical snowmaking process, resulting in the survivability of freezing temperatures or the presence of antimicrobial agents. Water storage in reservoirs prior to snowmaking allows us to reduce bacterial and ARG contaminants. Frequent and thorough cleaning of snowmaking devices may aid in reducing the negative impact snowmaking can have on the environment by reducing contaminant input and limiting the disturbance of the ecological balance. Full article
(This article belongs to the Special Issue Molecular Toxicology on the Environmental Impact of Pharmaceuticals)
Show Figures

Figure 1

12 pages, 1374 KiB  
Article
Application of Biomimetic Chromatography and QSRR Approach for Characterizing Organophosphate Pesticides
by Katarzyna Ewa Greber, Karol Topka Kłończyński, Julia Nicman, Beata Judzińska, Kamila Jarzyńska, Yash Raj Singh, Wiesław Sawicki, Tomasz Puzyn, Karolina Jagiello and Krzesimir Ciura
Int. J. Mol. Sci. 2025, 26(5), 1855; https://doi.org/10.3390/ijms26051855 - 21 Feb 2025
Cited by 1 | Viewed by 512
Abstract
Biomimetic chromatography is a powerful tool used in the pharmaceutical industry to characterize the physicochemical properties of molecules during early drug discovery. Some studies have indicated that biomimetic chromatography may also be useful for the evaluation of toxicologically relevant molecules. In this study, [...] Read more.
Biomimetic chromatography is a powerful tool used in the pharmaceutical industry to characterize the physicochemical properties of molecules during early drug discovery. Some studies have indicated that biomimetic chromatography may also be useful for the evaluation of toxicologically relevant molecules. In this study, we evaluated the usefulness of the biomimetic chromatography approach for determining the lipophilicity, affinity to phospholipids, and bind to plasma proteins of selected organophosphate pesticides. Quantitative structure–retention relationship (QSRR) models were proposed to understand the structural features that influence the experimentally determined properties. ACD/labs, Chemicalize, and alvaDesc software were used to calculate theoretical descriptors. Multilinear regression was used as the regression type, and feature selection was supported by a genetic algorithm. The obtained QSRR models were validated internally and externally, and they demonstrated satisfactory performance with key statistical parameters ranged from 0.844 to 0.914 for R2 and 0.696–0.898 for R2ext, respectively, indicating good predictive ability. Full article
(This article belongs to the Special Issue Molecular Toxicology on the Environmental Impact of Pharmaceuticals)
Show Figures

Figure 1

16 pages, 2295 KiB  
Article
Organic Sunscreens and Their Products of Degradation in Biotic and Abiotic Conditions—In Silico Studies of Drug-Likeness and Human Placental Transport
by Anna W. Sobańska, Arkaprava Banerjee and Kunal Roy
Int. J. Mol. Sci. 2024, 25(22), 12373; https://doi.org/10.3390/ijms252212373 - 18 Nov 2024
Cited by 2 | Viewed by 1133
Abstract
A total of 16 organic sunscreens and over 160 products of their degradation in biotic and abiotic conditions were investigated in the context of their safety during pregnancy. Drug-likeness and the ability of the studied compounds to be absorbed from the gastrointestinal tract [...] Read more.
A total of 16 organic sunscreens and over 160 products of their degradation in biotic and abiotic conditions were investigated in the context of their safety during pregnancy. Drug-likeness and the ability of the studied compounds to be absorbed from the gastrointestinal tract and cross the human placenta were predicted in silico using the SwissADME software (for drug-likeness and oral absorption) and multiple linear regression and “ARKA” models (for placenta permeability expressed as fetus-to-mother blood concentration in the state of equilibrium), with the latter outperforming the MLR models. It was established that most of the studied compounds can be absorbed from the gastrointestinal tract. The drug-likeness of the studied compounds (expressed as a binary descriptor, Lipinski) is closely related to their ability to cross the placenta (most likely by a passive diffusion mechanism). The organic sunscreens and their degradation products are likely to cross the placenta, except for very bulky and highly lipophilic 1,3,5-triazine derivatives; an avobenzone degradation product, 1,2-bis(4-tert-butylphenyl)ethane-1,2-dione; diethylamino hydroxybenzoyl hexyl benzoate; and dimerization products of sunscreens from the 4-methoxycinnamate group. Full article
(This article belongs to the Special Issue Molecular Toxicology on the Environmental Impact of Pharmaceuticals)
Show Figures

Figure 1

11 pages, 1102 KiB  
Article
Environmentally Relevant Levels of Antiepileptic Carbamazepine Altered Intestinal Microbial Composition and Metabolites in Amphibian Larvae
by Wei Dang, Jin-Hui Zhang, Zi-Chun Cao, Jia-Meng Yang and Hong-Liang Lu
Int. J. Mol. Sci. 2024, 25(13), 6950; https://doi.org/10.3390/ijms25136950 - 25 Jun 2024
Viewed by 1287
Abstract
There is growing concern about the potential ecological risks posed by pharmaceutical residues in the aquatic environment. However, our understanding of the toxic effects of antiepileptic pharmaceuticals, such as carbamazepine (CBZ), on aquatic animal larvae is still limited. In this study, the tadpoles [...] Read more.
There is growing concern about the potential ecological risks posed by pharmaceutical residues in the aquatic environment. However, our understanding of the toxic effects of antiepileptic pharmaceuticals, such as carbamazepine (CBZ), on aquatic animal larvae is still limited. In this study, the tadpoles of the black-spotted pond frog (Pelophylax nigromaculatus) were exposed to environmentally relevant concentrations of CBZ (0.3 and 3.0 μg/L) for 30 days, and their growth, intestinal microbial composition, and metabolites were investigated to assess the potential toxic effects of CBZ in non-targeted aquatic organisms. Some tadpoles died during exposure, but there was no significant among-group difference in the survival and growth rates. CBZ exposure significantly altered the composition of tadpole intestinal microbiota. Relative abundances of some bacterial genera (e.g., Blautia, Prevotella, Bacillus, Microbacterium, etc.) decreased, while others (e.g., Paucibacter, etc.) increased in CBZ-exposed tadpoles. Interestingly, CBZ-induced alterations in some bacteria might not necessarily lead to adverse outcomes for animals. Meanwhile, small molecular intestinal metabolites related to energy metabolism, and antioxidant and anti-inflammatory activities were also altered after exposure. Taken together, environmentally relevant levels of CBZ might alter the metabolic and immune performances of amphibian larvae by modifying the abundance of some specific bacteria and the level of metabolites in their intestines, thereby potentially causing a long-term effect on their fitness. Full article
(This article belongs to the Special Issue Molecular Toxicology on the Environmental Impact of Pharmaceuticals)
Show Figures

Figure 1

Back to TopTop