Horticultural Plants’ Response to Biotic and Abiotic Stresses

A special issue of Horticulturae (ISSN 2311-7524). This special issue belongs to the section "Biotic and Abiotic Stress".

Deadline for manuscript submissions: closed (25 June 2024) | Viewed by 6962

Special Issue Editor


E-Mail Website
Guest Editor
School of Horticulture, Hainan University, Haikou 570228, China
Interests: abiotic stress; plant physiology; salinity; heavy metal; nutrition; micronutrients; antioxidants; phytohormone; heat stress; oxidative stress; reactive oxygen species; reactive nitrogen species; membrane biology; starch physiology
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

The current global climate change trend has had a substantial impact on the growth, yield, and quality of horticulture produce. The alterations in climate patterns and human activities give rise to diverse environmental conditions, such as heat, cold, drought, salinity, sodic and alkaline conditions, and heavy metal pollution. These conditions can significantly affect the productivity of horticultural crops. Various horticultural crops exhibit varying responses to abiotic stressors and are particularly vulnerable to abiotic stress, mainly during the early growth of seedlings, vegetative phases, reproductive stages (such as seed formation, blooming, and fruiting), and leaf senescence. Additionally, biotic stressors, such as nematodes, bacteria, insects, fungus, vectors, and viruses significantly impede the strength and production of horticultural crops.

The study of biostimulants compounds, hormones, new chemicals, and microbes in agriculture has shown that they may improve the ability of agricultural plants to withstand abiotic and biotic challenges, resulting in greater production in horticulture crops. Recent research has revealed that the novel phytochemicals, secondary metabolites, and antimicrobial peptides reduce the harmful effects of biotic and abiotic stresses by increasing the activity of antioxidants, both enzymatic and non-enzymatic, interacting with phytohormones, activating defense genes, and promoting systemic resistance.

In this context, we propose a research topic that will consist of original research, reviews, and methods articles. This compilation aims to provide a comprehensive understanding of the morpho-physiological, biochemical, and molecular mechanisms that enable horticultural crops to tolerate abiotic and biotic factors.

Prof. Dr. Zhiwei Wang
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Horticulturae is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2200 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • biostimulants compounds
  • phytochemicals
  • global climate change

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • Reprint: MDPI Books provides the opportunity to republish successful Special Issues in book format, both online and in print.

Further information on MDPI's Special Issue policies can be found here.

Published Papers (5 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

18 pages, 3621 KiB  
Article
Evaluation of the Resistance of Bitter Cucumber (Momordica charantia) to Saline Stress through Physical, Biochemical, and Physiological Analysis
by Ștefănica Ostaci, Cristina Slabu, Alina Elena Marta and Carmenica Doina Jităreanu
Horticulturae 2024, 10(9), 893; https://doi.org/10.3390/horticulturae10090893 - 23 Aug 2024
Viewed by 1178
Abstract
Momordica charantia is a climbing plant often used in traditional medicine to treat a large number of diseases, including diabetes. Salinity is one of the main stressors faced by plants, affecting almost half of irrigated agricultural land and constantly increasing. The aim of [...] Read more.
Momordica charantia is a climbing plant often used in traditional medicine to treat a large number of diseases, including diabetes. Salinity is one of the main stressors faced by plants, affecting almost half of irrigated agricultural land and constantly increasing. The aim of this study was to determine the resistance of some bitter cucumber genotypes to salt stress by means of dry matter analysis, chlorophyll a, chlorophyll b, malondialdehyde content, chlorophyll fluorescence, and potassium (K)/silicon (Si) and calcium (Ca)/silicon (Si) atomic ratios. Two varieties of bitter cucumber and three experimental lines were used for the experiment. Treatments with different saline solutions (100 mM of NaCl and 200 mM of NaCl) were applied and compared with an untreated control (0 mM of NaCl). The analyses revealed an increase in the dry matter content of the varieties subjected to salt stress. The Line 4 genotype showed an increase of up to 37.2% compared to the control when treated with 200 mM of NaCl. Following the analysis of the chlorophyll a content, a 38% decrease in its amount compared to the control was observed when treated with 100 mM of saline and 58.6% when treated with 200 mM of NaCl in genotype Line 4. Line 3 showed an increase in the chlorophyll a content compared to the control by 53% in the case of saline treatment with 200 mM. After the analysis of the chlorophyll b content, a 44% decrease was revealed in the case of Line 4 in the variant treated with 100 mM compared to the control and a 61% decrease in the 200 mM NaCl treatment. The highest increase in the concentration of malondialdehyde was recorded in the case of Line 4 in the variant treated with 200 mM of NaCl by 41% compared to the control. The maximum quantum yield of PS II decreased in the treated variants compared to the control plants. The most pronounced difference compared to the control was registered in the case of Line 4, where the treatment with 100 mM of NaCl caused a decrease of 16%, and the treatment with 200 mM caused a decrease of 25%. In the case of the atomic ratio, significant decreases in K and Ca were observed in the NaCl-treated variants. The observed differences between the values obtained for each studied genotype highlight the different degrees of their resistance to salinity. Full article
(This article belongs to the Special Issue Horticultural Plants’ Response to Biotic and Abiotic Stresses)
Show Figures

Figure 1

10 pages, 2597 KiB  
Article
Aequorin-Based In Vivo Luminescence Imaging Detects Calcium Signalling in Response to Biotic and Abiotic Stresses in Tomato
by Lulu Liu, Xiaofei Li, Yibo Teng and Xunyan Liu
Horticulturae 2024, 10(8), 857; https://doi.org/10.3390/horticulturae10080857 - 14 Aug 2024
Cited by 1 | Viewed by 948
Abstract
The tomato (Solanum lycopersicum L.), a widely cultivated and economically important vegetable crop, is subject to a number of biotic and abiotic stresses in nature. Several abiotic and biotic stresses have been demonstrated to elevate the concentration of cytosolic free Ca2+ [...] Read more.
The tomato (Solanum lycopersicum L.), a widely cultivated and economically important vegetable crop, is subject to a number of biotic and abiotic stresses in nature. Several abiotic and biotic stresses have been demonstrated to elevate the concentration of cytosolic free Ca2+ ([Ca2+]i) in Arabidopsis due to the influx of calcium ions. In this study, recombinant aequorin was introduced into the tomato in order to investigate the change in [Ca2+]i when treated with exogenous Ca2+. This resulted in strong luminescence signals, which were mainly observed in the roots. Luminescence signals were also detected in the whole plant, including the leaves, when a surfactant (Silwet L-77) was added to coelenterazine. The concentration of [Ca2+]i increased with the dosage of NaCl/elf18. The luminescence signals also showed a lower increase in intensity with elf18 treatment compared to NaCl treatment. Furthermore, the [Ca2+]i responses to other abiotic or biotic stresses, such as H2O2 and Pep1, were also evaluated. It was found that this transgenic tomato expressing aequorin can effectively detect changes in [Ca2+]i levels. The transgenic tomato expressing aequorin represents an effective tool for detecting changes in [Ca2+]i and provides a solid basis for investigating the adaptation mechanisms of tomatoes to various abiotic and biotic stresses. Moreover, the aequorin-based system would be a highly valuable tool for studying the specificity and crosstalk of plant signalling networks under abiotic and biotic stresses in tomatoes. Full article
(This article belongs to the Special Issue Horticultural Plants’ Response to Biotic and Abiotic Stresses)
Show Figures

Figure 1

18 pages, 10844 KiB  
Article
Genome and Transcriptome Analysis of NF-Y Transcription Factors in Sweet Potato under Salt Stress
by Bei Liang, Jiayun Wu, Ye Chen, Bei Wang, Feiyan Gao, Yongping Li and Guopeng Zhu
Horticulturae 2024, 10(8), 798; https://doi.org/10.3390/horticulturae10080798 - 28 Jul 2024
Cited by 1 | Viewed by 1548
Abstract
Nuclear factor Y (NF-Y) is a heterotrimeric complex composed of three unique subunits: NF-YA, NF-YB, and NF-YC. This transcription factor complex binds to the CCAAT box of eukaryotic promoters, playing a crucial role in various biological processes in plants. Despite its importance, the [...] Read more.
Nuclear factor Y (NF-Y) is a heterotrimeric complex composed of three unique subunits: NF-YA, NF-YB, and NF-YC. This transcription factor complex binds to the CCAAT box of eukaryotic promoters, playing a crucial role in various biological processes in plants. Despite its importance, the NF-Y gene family has not been reported in the sweet potato (Ipomoea batatas) genome, an important food and energy crop. Understanding the role and function of NF-Y in sweet potatoes could provide valuable insights for genetic improvement and yield enhancement. To address this gap, our research aimed to comprehensively catalog and characterize the NF-Y genes in sweet potatoes, which we refer to as ‘IbNF-Y’, where ‘Ib’ denotes Ipomoea batatas. A total of 37 NF-Ys were identified, including 11 NF-YA, 21 NF-YB, and 5 NF-YC members, and their phylogeny, gene structure, chromosomal distribution, and conserved motifs were analyzed. Additionally, we assessed their expression patterns under salt stress in both light and dark conditions using transcriptome sequencing. Notably, we discovered that certain IbNF-Y genes showed significant changes in expression under salt stress, suggesting their potential roles in sweet potato’s adaptation to saline environments. Furthermore, our work enriches the genomics and genetic research on sweet potatoes and contributes valuable knowledge to the broader scientific community of the Convolvulaceae family. Full article
(This article belongs to the Special Issue Horticultural Plants’ Response to Biotic and Abiotic Stresses)
Show Figures

Figure 1

28 pages, 4867 KiB  
Article
Improving the Salt Tolerance of “Old Limachino Tomato” by Using a New Salt-Tolerant Rootstock
by Juan-Pablo Martínez, Raúl Fuentes, Danitza Badilla, Camila Rosales, Juan Felipe Alfaro-Quezada, Francisco Correa, Carolina Lizana, Boris Sagredo, Muriel Quinet and Stanley Lutts
Horticulturae 2024, 10(8), 780; https://doi.org/10.3390/horticulturae10080780 - 24 Jul 2024
Cited by 1 | Viewed by 1203
Abstract
Salinity is a major constraint limiting the yield of tomatoes. However, grafting strategies may help to overcome the salt toxicity of this important horticultural species if appropriate rootstocks are identified. The present study aimed to test a new rootstock, JUPAFORT1, obtained by crossing [...] Read more.
Salinity is a major constraint limiting the yield of tomatoes. However, grafting strategies may help to overcome the salt toxicity of this important horticultural species if appropriate rootstocks are identified. The present study aimed to test a new rootstock, JUPAFORT1, obtained by crossing the glycophyte Solanum lycopersicum (cv. Poncho Negro) with the halophyte wild-related species Solanum chilense to improve the salinity tolerance of the Chilean tomato landrace Old Limachino Tomato (OLT). Intact OLT plants were exposed to 0, 80, or 160 mM of NaCl for 21 days at the vegetative stage and compared with self-grafted (L/L) and Limachino plants grafted on JUPAFORT1 rootstock (L/R) under a completely randomized design. JUPAFORT1 increased OLT scion vigor in the absence of salt but did not significantly increase fresh weight under stress conditions. However, JUPAFORT1 confers to the scion an anisohydric behavior contrasting with the isohydric behavior of L and L/L plants as indicated by measurements of stomatal conductance; L/R plants were able to maintain their metabolic status despite a slight decrease in the leaf’s relative water content. JUPAFORT1 rootstock also enabled the maintenance of photosynthetic pigment concentrations in the scion in contrast to L and L/L plants, which exhibited a decrease in photosynthetic pigments under stress conditions. L/R plants encountered oxidative stress at the highest stress intensity (160 mM of NaCl) only, while L and L/L plants suffered from oxidative damage at a lower dose (80 mM of NaCl). L/R plants behaved as includer plants and did not sequester Na+ in the root system, in contrast to L and L/L, which behaved as excluder plants retaining Na+ in the root system to avoid its translocation to the shoots. The expression of genes coding for ion transporters (HKT1.1, HKT1.2, LKT1, SKOR, SOS2, and SOS3) in the root system was not modified by salinity in L/R. In contrast, their expression varied in response to salinity in L and L/L. Overall, L/R plants exhibited higher physiological stability than L/L or L plants in response to an increasing NaCl dose and did not require additional energy investment to trigger an adaptative response to salinity. This suggests that the constitutive salinity tolerance of the halophyte S. chilense was maintained in the interspecific rootstock. JUPAFORT1 issued from S. lycopersicum x S. chilense may thus improve salt-stress resilience in OLT tomatoes. Additional studies are required to identify the molecular components involved in the root-to-shoot signaling pathway in this promising material. Full article
(This article belongs to the Special Issue Horticultural Plants’ Response to Biotic and Abiotic Stresses)
Show Figures

Figure 1

18 pages, 4627 KiB  
Article
Spectral Study of Some Metabolites Involved in the Adaptation Reaction of Bitter Cucumber (Momordica charantia) to Saline Stress
by Ștefănica Ostaci, Cristina Slabu, Alina Elena Marta, Mihaela Covașă, Iulia Miniață and Carmenica Doina Jităreanu
Horticulturae 2024, 10(4), 309; https://doi.org/10.3390/horticulturae10040309 - 22 Mar 2024
Cited by 1 | Viewed by 1485
Abstract
Momordica charantia (bitter cucumber) is a tropical and subtropical plant with a long history of use in traditional medicine. Salinity is a major problem that limits plant growth and biomass production. The aim of this work was to determine the salinity tolerance of [...] Read more.
Momordica charantia (bitter cucumber) is a tropical and subtropical plant with a long history of use in traditional medicine. Salinity is a major problem that limits plant growth and biomass production. The aim of this work was to determine the salinity tolerance of bitter cucumber, through the spectral analyses of some metabolites involved in their response to abiotic stress factors. To carry out the experiment, two varieties of bitter cucumber and three experimental lines were subjected to saline stress by applying treatments with saline solutions in different concentrations (control—0 mM NaCl; V1—100 mM NaCl; and V2—200 mM NaCl). After applying the treatments, analyses were carried out on the amount of free proline (Pro), ascorbic acid, and aromatic amino acids. For proline and ascorbic acid, the tendency was for their concentration to decrease in the variants treated with saline solutions" with "the tendency was for their absorbance to decrease in the variants treated with saline solutions. The differences between the controls and the treated variants, as well as between the studied genotypes, highlight their capacity for resistance and adaptation to saline stress. Full article
(This article belongs to the Special Issue Horticultural Plants’ Response to Biotic and Abiotic Stresses)
Show Figures

Graphical abstract

Back to TopTop