Spectral Study of Some Metabolites Involved in the Adaptation Reaction of Bitter Cucumber (Momordica charantia) to Saline Stress
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Methods of Characterization
2.3. Procedure for Obtaining Plant Material
2.4. Procedures for the Determination of Different Metabolites
2.4.1. Procedure for the Determination of Proline
2.4.2. Procedure for the Determination of Ascorbic Acid
2.4.3. Procedure for Identification of Aromatic Amino Acids in Proteins
2.5. Statistical Analysis
3. Results
3.1. Proline (Pro)
3.2. Ascorbic Acid (AsA)
3.3. Aromatic Amino Acids (AAAs)
4. Discussion
4.1. Proline
4.2. Ascorbic Acid
4.3. Aromatic Amino Acids
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Alisofi, S.; Einali, A.; Sangtarash, M.H. Jasmonic acid-induced metabolic responses in bitter melon (Momordica charantia) seedlings under salt stress. J. Hortic. Sci. Biotechnol. 2020, 95, 247–259. [Google Scholar] [CrossRef]
- Wang, S.; Li, Z.; Yang, G.; Ho, C.T.; Li, S. Momordica charantia: A popular health-promoting vegetable with multifunctionality. Food Funct. 2017, 8, 1749–1762. [Google Scholar] [CrossRef]
- Grover, J.; Yadav, S. Pharmacological actions and potential uses of Momordica charantia: A review. J. Ethnopharmacol. 2004, 93, 123–132. [Google Scholar] [CrossRef]
- Christine, M. Bitter Gourd: Health Benefits, Nutrition, and Uses. Available online: https://www.webmd.com/diet/health-benefits-bitter-gourd (accessed on 29 January 2024).
- Bortolotti, M.; Mercatelli, D.; Polito, L. Momordica charantia, a nutraceutical approach for inflammatory related diseases. Front. Pharmacol. 2019, 10, 486. [Google Scholar] [CrossRef]
- Basch, E.; Gabardi, S.; Ulbricht, C. Bitter melon (Momordica charantia): A review of efficacy and safety. Am. J. Health Pharm. 2003, 60, 356–359. [Google Scholar] [CrossRef] [PubMed]
- Chanda, R.; Samadder, A.; Banerjee, J. Anti-diabetic Activity of Momordica Charantia or Bitter Melon: A Review. Acta Sci. Pharm. Sci. 2019, 3, 24–30. [Google Scholar]
- Patel, A.; Patel, M.; Mori, C.V.; Kumar, M.; Patel, S. Effect of integrated nutrient management on growth and quality of bitter gourd (Momordica charantia L.). Int. J. Chem. Stud. 2020, 8, 2575–2578. [Google Scholar] [CrossRef]
- Li, Z.; Xia, A.; Li, S.; Yang, G.; Jin, W.; Zhang, M.; Wang, S. The Pharmacological Properties and Therapeutic Use of Bitter Melon (Momordica charantia L.). Curr. Pharmacol. Rep. 2020, 6, 103–109. [Google Scholar] [CrossRef]
- Negrão, S.; Schmöckel, S.M.; Tester, M. Evaluating physiological responses of plants to salinity stress. Ann. Bot. 2017, 119, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Iqbal, N.; Umar, S.; Khan, N.A.; Khan, M.I.R. A new perspective of phytohormones in salinity tolerance: Regulation of proline metabolism. Environ. Exp. Bot. 2014, 100, 34–42. [Google Scholar] [CrossRef]
- Qadir, M.; Quillérou, E.; Nangia, V.; Murtaza, G.; Singh, M.; Thomas, R.; Drechsel, P.; Noble, A. Economics of salt-induced land degradation and restoration. Nat. Resour. Forum 2014, 38, 282–295. [Google Scholar] [CrossRef]
- Mohsen, A.A.; Kamal, M.; Ebrahim, H.; Fathy, W.; Ghoraba, S. Effect of salinity stress on Vicia faba productivity with respect to ascorbic acid treatment Awatif. Iran. J. Plant Physiol. 1980, 14, 725–736. [Google Scholar]
- Gamalero, E.; Bona, E.; Todeschini, V.; Lingua, G. Saline and arid soils: Impact on bacteria, plants, and their interaction. Biology 2020, 9, 116. [Google Scholar] [CrossRef] [PubMed]
- Isayenkov, S.V.; Maathuis, F.J.M. Plant salinity stress: Many unanswered questions remain. Front. Plant Sci. 2019, 10, 80. [Google Scholar] [CrossRef] [PubMed]
- Hernández, J.A.; Ferrer, M.A.; Jiménez, A.; Barceló, A.R.; Sevilla, F. Antioxidant systems and O2·−/H2O2 production in the apoplast of pea leaves. Its relation with salt-induced necrotic lesions in minor veins. Plant Physiol. 2001, 127, 817–831. [Google Scholar] [CrossRef] [PubMed]
- Zhu, J.K. Plant salt tolerance. Trends Plant Sci. 2001, 6, 66–71. [Google Scholar] [CrossRef] [PubMed]
- Wang, N.; Zhao, Z.; Zhang, X.; Liu, S.; Zhang, K.; Hu, M. Plant growth, salt removal capacity, and forage nutritive value of the annual euhalophyte Suaeda salsa irrigated with saline water. Front. Plant Sci. 2023, 13, 1040520. [Google Scholar] [CrossRef] [PubMed]
- Atta, K.; Mondal, S.; Gorai, S.; Singh, A.P.; Kumari, A.; Ghosh, T.; Roy, A.; Hembram, S.; Gaikwad, D.J.; Mondal, S.; et al. Impacts of salinity stress on crop plants: Improving salt tolerance through genetic and molecular dissection. Front. Plant Sci. 2023, 14, 1241736. [Google Scholar] [CrossRef] [PubMed]
- Munns, R.; Passioura, J.B.; Colmer, T.D.; Byrt, C.S. Osmotic adjustment and energy limitations to plant growth in saline soil. New Phytol. 2020, 225, 1091–1096. [Google Scholar] [CrossRef]
- Huang, Z.; Zhao, L.; Chen, D.; Liang, M.; Liu, Z.; Shao, H.; Long, X. Salt Stress Encourages Proline Accumulation by Regulating Proline Biosynthesis and Degradation in Jerusalem Artichoke Plantlets. PLoS ONE 2013, 8, e62085. [Google Scholar] [CrossRef]
- McParland, E.L.; Alexander, H.; Johnson, W.M. The Osmolyte Ties That Bind: Genomic Insights into Synthesis and Breakdown of Organic Osmolytes in Marine Microbes. Front. Mar. Sci. 2021, 8, 689306. [Google Scholar] [CrossRef]
- Kavi Kishor, P.B.; Suravajhala, P.; Rathnagiri, P.; Sreenivasulu, N. Intriguing Role of Proline in Redox Potential Conferring High Temperature Stress Tolerance. Front. Plant Sci. 2022, 13, 867531. [Google Scholar] [CrossRef]
- Kaul, S.; Sharma, S.S.; Mehta, I.K. Free radical scavenging potential of L-proline: Evidence from in vitro assays. Amino Acids 2008, 34, 315–320. [Google Scholar] [CrossRef]
- Edwards, L.J.; Williams, D.A.; Gardner, D.K. Intracellular pH of the mouse preimplantation embryo: Amino acids act as buffers of intracellular pH. Hum. Reprod. 1998, 13, 3441–3448. [Google Scholar] [CrossRef]
- Wu, G. Advances in Experimental Medicine and Biology 1332 Amino Acids in Nutrition and Health Amino Acids in Gene Expression, Metabolic Regulation, and Exercising Performance, 1st ed.; Springer: Berlin/Heidelberg, Germany, 2021. [Google Scholar]
- Hayat, S.; Hayat, Q.; Alyemeni, M.N.; Wani, A.S.; Pichtel, J.; Ahmad, A. Role of proline under changing environments: A review. Plant Signal. Behav. 2012, 7, 37–41. [Google Scholar] [CrossRef] [PubMed]
- Meena, M.; Divyanshu, K.; Kumar, S.; Swapnil, P.; Zehra, A.; Shukla, V.; Yadav, M.; Upadhyay, R.S. Regulation of L-proline biosynthesis, signal transduction, transport, accumulation and its vital role in plants during variable environmental conditions. Heliyon 2019, 5, e02952. [Google Scholar] [CrossRef]
- Foyer, C.H.; Noctor, G. Ascorbate and glutathione: The heart of the redox hub. Plant Physiol. 2011, 155, 2–18. [Google Scholar] [CrossRef] [PubMed]
- Shapiguzov, A.; Vainonen, J.P.; Wrzaczek, M.; Kangasjärvi, J. ROS-talk—How the apoplast, the chloroplast, and the nucleus get the message through. Front. Plant Sci. 2012, 3, 292. [Google Scholar] [CrossRef]
- Kaushik, D.; Aryadeep, R. Reactive oxygen species (ROS) and response of antioxidants as ROS-scavengers during environmental stress in plants. Front. Environ. Sci. 2014, 2, 53. [Google Scholar] [CrossRef]
- Misra, N.; Gupta, A.K. Effect of salt stress on proline metabolism in two high yielding genotypes of green gram. Plant Sci. 2005, 169, 331–339. [Google Scholar] [CrossRef]
- Hameed, A.; Ahmed, M.Z.; Hussain, T.; Aziz, I.; Ahmad, N.; Gul, B.; Nielsen, B.L. Effects of salinity stress on chloroplast structure and function. Cells 2021, 10, 2023. [Google Scholar] [CrossRef] [PubMed]
- Upadhyaya, C.P.; Venkatesh, J.; Gururani, M.A.; Asnin, L.; Sharma, K.; Ajappala, H.; Park, S.W. Transgenic potato overproducing l-ascorbic acid resisted an increase in methylglyoxal under salinity stress via maintaining higher reduced glutathione level and glyoxalase enzyme activity. Biotechnol. Lett. 2011, 33, 2297–2307. [Google Scholar] [CrossRef] [PubMed]
- Muhammad, I.; Shalmani, A.; Ali, M.; Yang, Q.H.; Ahmad, H.; Li, F.B. Mechanisms Regulating the Dynamics of Photosynthesis Under Abiotic Stresses. Front. Plant Sci. 2021, 11, 615942. [Google Scholar] [CrossRef] [PubMed]
- Naz, H.; Akram, N.A.; Ashraf, M. Impact of ascorbic acid on growth and some physiological attributes of cucumber (Cucumis Sativus) plants under water-deficit conditions. Pak. J. Bot. 2016, 48, 877–883. [Google Scholar]
- Shafiq, S.; Akram, N.A.; Ashraf, M.; Arshad, A. Synergistic effects of drought and ascorbic acid on growth, mineral nutrients and oxidative defense system in canola (Brassica napus L.) plants. Acta Physiol. Plant. 2014, 36, 1539–1553. [Google Scholar] [CrossRef]
- Shigeoka, S.; Maruta, T. Cellular redox regulation, signaling, and stress response in plants. Biosci. Biotechnol. Biochem. 2014, 78, 1457–1470. [Google Scholar] [CrossRef]
- Gest, N.; Gautier, H.; Stevens, R. Ascorbate as seen through plant evolution: The rise of a successful molecule? J. Exp. Bot. 2012, 63, 695–709. [Google Scholar] [CrossRef]
- Wang, M.; Maeda, H.A. Aromatic amino acid aminotransferases in plants. Phytochem. Rev. 2018, 17, 131–159. [Google Scholar] [CrossRef]
- Filiz, E.; Cetin, D.; Akbudak, M.A. Aromatic amino acids biosynthesis genes identification and expression analysis under salt and drought stresses in Solanum lycopersicum L. Sci. Hortic. 2019, 250, 127–137. [Google Scholar] [CrossRef]
- Tohge, T.; Watanabe, M.; Hoefgen, R.; Fernie, A.R. Shikimate and phenylalanine biosynthesis in the green lineage. Front. Plant Sci. 2013, 4, 62. [Google Scholar] [CrossRef]
- Maeda, H.; Dudareva, N. The shikimate pathway and aromatic amino acid biosynthesis in plants. Annu. Rev. Plant Biol. 2012, 63, 73–105. [Google Scholar] [CrossRef]
- Ostaci, Ș.; Slabu, C.; Marta, A.E.; Covașă, M.; Miniață, I.; Jităreanu, D.C. The Influence of Salt Stress on the Content of Vitamin C in the Leaves of some Varieties and Lines of Bitter Cucumber (Momordica charantia). Bull. Univ. Agric. Sci. Vet. Med. CLUJ-NAPOCA Hortic. 2023, 80, 65–70. [Google Scholar] [CrossRef]
- Bevans, R. Two-Way ANOVA|Examples & When to Use It; Scribbr: Amsterdam, The Netherlands, 2022; Available online: https://www.scribbr.com/statistics/two-way-anova/ (accessed on 15 January 2024).
- Turney, S. Pearson Correlation Coefficient (r)|Guide & Examples. 2024. Available online: https://www.scribbr.com/statistics/pearson-correlation-coefficient/ (accessed on 15 January 2024).
- Kenton, W. Analysis of Variance (ANOVA) Explanation, Formula, and Applications. 2023. Available online: https://www.investopedia.com/terms/a/anova.asp (accessed on 20 January 2024).
- Goulden, C.H. Methods of Statistical Analysis, 2nd. Available online: https://www.statisticshowto.com/probability-and-statistics/t-test/ (accessed on 15 January 2024).
- Matei, N.; Dobrinas, S.; Radu, G.L. Spectrophotometric determination of ascorbic acid in pharmaceutical products with the Prussian Blue reaction. Ovidius Univ. Ann. Chem. 2012, 23, 174–179. [Google Scholar] [CrossRef]
- Mansour, M.M.F.; Ali, E.F. Evaluation of proline functions in saline conditions. Phytochemistry 2017, 140, 52–68. [Google Scholar] [CrossRef]
- Marin, J.A.; Andreu, P.; Carrasco, A.; Arbeloa, A. Determination of proline concentration, an abiotic stress marker, in root exudates of excised root cultures of fruit tree rootstocks under salt stress. Sahariens 2010, 24, 722–727. [Google Scholar]
- Li, J.; Diao, Y.; Jiang, L.; He, Q.; Wang, F.; Hao, W. Exploration of ecological restoration of saline-alkali land based on NbS—Study on the salt resistance and desalination performance of three cash crops. PLoS ONE 2022, 17, e0275828. [Google Scholar] [CrossRef]
- Meghashree, J.R.; Ganiger, V.M.; Kumar, J.S.A.; Bhuvaneshwari, G.; Gopali, J.B.; Evoor, S.; Cholin, S.S.; Gunnaiah, R.; Shankarappa, T.H.; Krishnamurthy, S.L.; et al. Genetic diversity and population structure assessment of Indian bitter gourd accessions using nutritional content and molecular markers. Genet. Resour. Crop Evol. 2023. [Google Scholar] [CrossRef]
- Munns, R. Physiological processes limiting plant growth in saline soils: Some dogmas and hypotheses. Plant Cell Environ. 1993, 16, 15–24. [Google Scholar] [CrossRef]
- Kumar, M.; Patel, M.K.; Kumar, N.; Bajpai, A.B.; Siddique, K.H.M. Metabolomics and molecular approaches reveal drought stress tolerance in plants. Int. J. Mol. Sci. 2021, 22, 9108. [Google Scholar] [CrossRef] [PubMed]
- Sharma, A.; Shahzad, B.; Rehman, A.; Bhardwaj, R.; Landi, M.; Zheng, B. Response of phenylpropanoid pathway and the role of polyphenols in plants under abiotic stress. Molecules 2019, 24, 2452. [Google Scholar] [CrossRef]
- Stewart, K. Pearson’s Correlation Coefficient. 2023. Available online: https://www.britannica.com/topic/Pearsons-correlation-coefficient (accessed on 20 January 2024).
- Hassan, A.; Amjad, S.F.; Saleem, M.H.; Yasmin, H.; Imran, M.; Riaz, M.; Ali, Q.; Joyia, F.A.; Mobeen; Ahmed, S.; et al. Foliar application of ascorbic acid enhances salinity stress tolerance in barley (Hordeum vulgare L.) through modulation of morpho-physio-biochemical attributes, ions uptake, osmo-protectants and stress response genes expression. Saudi J. Biol. Sci. 2021, 28, 4276–4290. [Google Scholar] [CrossRef] [PubMed]
- Slama, I.; Abdelly, C.; Bouchereau, A.; Flowers, T.; Savouré, A. Diversity, distribution and roles of osmoprotective compounds accumulated in halophytes under abiotic stress. Ann. Bot. 2015, 115, 433–447. [Google Scholar] [CrossRef] [PubMed]
Source of Variation | SS | df | MS | F | p-Value | F Crit | Significance |
---|---|---|---|---|---|---|---|
Genotype | 1198.237 | 4 | 299.5593 | 1628.163 | 1.326663 × 10−34 | 2.689628 | *** |
Concentration | 954.8919 | 2 | 477.4459 | 2595.011 | 2.464525 × 10−34 | 3.31583 | *** |
Interaction | 828.2617 | 8 | 103.5327 | 562.7203 | 1.645851 × 10−30 | 2.266163 | *** |
Within | 5.519582 | 30 | 0.183986 | ||||
Total | 2986.91 | 44 |
Variants Compared | T-Stat | p Two-Tail | T Critical Two-Tail | Significance |
---|---|---|---|---|
I–II | −3.239224152 | 0.003082757 | 2.048407142 | ** |
I–III | −3.857725603 | 0.000614568 | 2.048407142 | *** |
II–III | −2.33471385 | 0.026955557 | 2.048407142 | * |
Source of Variation | SS | df | MS | F | p-Value | F Crit | Significance |
---|---|---|---|---|---|---|---|
Genotype | 9467.206 | 4 | 2366.802 | 860.0043 | 1.79 × 10−30 | 2.689628 | *** |
Concentration | 13,195.97 | 2 | 6597.983 | 2397.452 | 8.03 × 10−34 | 3.31583 | *** |
Interaction | 12,469.11 | 8 | 1558.639 | 566.3493 | 1.5 × 10−30 | 2.266163 | *** |
Within | 82.56244 | 30 | 2.752081 | ||||
Total | 35,214.85 | 44 |
Variants Compared | T-Stat | p Two-Tail | T Critical Two-Tail | Significance |
---|---|---|---|---|
I–II | −5.904942802 | 2.36413 × 10−6 | 2.048407142 | *** |
I–III | −4.201226776 | 0.000244445 | 2.048407142 | *** |
II–III | −2.451205546 | 0.020739555 | 2.048407142 | * |
Source of Variation | SS | df | MS | F | p-Value | F Crit | Significance |
---|---|---|---|---|---|---|---|
Genotype | 0.140505 | 4 | 0.035126 | 32,245.54 | 5.03 × 10−54 | 2.689628 | *** |
Concentration | 0.012957 | 2 | 0.006478 | 5947.205 | 1.02 × 10−39 | 3.31583 | *** |
Interaction | 0.013892 | 8 | 0.001736 | 1594.066 | 2.93 × 10−37 | 2.266163 | *** |
Within | 3.27 × 10−5 | 30 | 1.09 × 10−6 | ||||
Total | 0.167386 | 44 |
Variants Compared | T-Stat | p Two-Tail | T Critical Two-Tail | Significance |
---|---|---|---|---|
I–II | 0.662244123 | 0.513229129 | 0.513229129 | NS |
I–III | 1.945343808 | 0.062214709 | 0.062214709 | NS |
II–III | 1.37272832 | 0.181132347 | 0.181132347 | NS |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ostaci, Ș.; Slabu, C.; Marta, A.E.; Covașă, M.; Miniață, I.; Jităreanu, C.D. Spectral Study of Some Metabolites Involved in the Adaptation Reaction of Bitter Cucumber (Momordica charantia) to Saline Stress. Horticulturae 2024, 10, 309. https://doi.org/10.3390/horticulturae10040309
Ostaci Ș, Slabu C, Marta AE, Covașă M, Miniață I, Jităreanu CD. Spectral Study of Some Metabolites Involved in the Adaptation Reaction of Bitter Cucumber (Momordica charantia) to Saline Stress. Horticulturae. 2024; 10(4):309. https://doi.org/10.3390/horticulturae10040309
Chicago/Turabian StyleOstaci, Ștefănica, Cristina Slabu, Alina Elena Marta, Mihaela Covașă, Iulia Miniață, and Carmenica Doina Jităreanu. 2024. "Spectral Study of Some Metabolites Involved in the Adaptation Reaction of Bitter Cucumber (Momordica charantia) to Saline Stress" Horticulturae 10, no. 4: 309. https://doi.org/10.3390/horticulturae10040309
APA StyleOstaci, Ș., Slabu, C., Marta, A. E., Covașă, M., Miniață, I., & Jităreanu, C. D. (2024). Spectral Study of Some Metabolites Involved in the Adaptation Reaction of Bitter Cucumber (Momordica charantia) to Saline Stress. Horticulturae, 10(4), 309. https://doi.org/10.3390/horticulturae10040309