E-Mail Alert

Add your e-mail address to receive forthcoming issues of this journal:

Journal Browser

Journal Browser

Special Issue "Physiological Responses to Abiotic and Biotic Stress in Forest Trees"

A special issue of Forests (ISSN 1999-4907). This special issue belongs to the section "Forest Ecophysiology and Biology".

Deadline for manuscript submissions: 28 February 2019

Special Issue Editors

Guest Editor
Prof. Dr. Heinz Rennenberg

Institut für Forstwissenschaften Professur für Baumphysiologie Georges-Köhler Allee, Geb. 53/54 79110 Freiburg, Germany
Website | E-Mail
Interests: nitrogen and phosphorus nutrition; nitrogen and sulfur metabolism; abiotic and biotic stress physiology; biogenic emissions; phytoremediation
Guest Editor
Prof. Dr. Andrea Polle

Forstbotanik und Baumphysiologie, Büsgen-Institut, Georg-August Universität Göttingen, Büsgenweg 2, 37077 Göttingen, Germany
Website | E-Mail
Interests: molecular physiology of tree stress adaptation; biotic interaction and functional diversity of mycorrhiza

Special Issue Information

Dear Colleagues,

As sessile organisms, plants have to cope in their environment with a multitude of natural and anthropogenic forms of stress. Due to their longevity, this is of particular significance for trees. As a consequence, trees developed an orchestra of resilience and resistance mechanisms to biotic and abiotic stresses in order to support their growth and development in a constantly changing atmospheric and pedospheric environment. The objective of this Special Issue of Forests is to summarize state-of-art knowledge and to report current progress on processes that determine resilience and resistance of trees from different zonobiomes to all forms of biotic and abiotic stress from the molecular to the whole tree level by review articles and original research papers.

Prof. Dr. Heinz Rennenberg
Prof. Dr. Andrea Polle
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All papers will be peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Forests is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 1800 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • climate change
  • heat
  • drought
  • water logging
  • salt stress
  • soil contamination
  • parasites
  • pathogens
  • herbivore

Published Papers (10 papers)

View options order results:
result details:
Displaying articles 1-10
Export citation of selected articles as:

Research

Open AccessArticle Identification and Analysis of a CPYC-Type Glutaredoxin Associated with Stress Response in Rubber Trees
Forests 2019, 10(2), 158; https://doi.org/10.3390/f10020158
Received: 17 January 2019 / Revised: 6 February 2019 / Accepted: 7 February 2019 / Published: 12 February 2019
PDF Full-text (2049 KB) | XML Full-text | Supplementary Files
Abstract
Glutaredoxins (GRXs) are a class of small oxidoreductases which modulate various biological processes in plants. Here, we isolated a GRX gene from the rubber tree (Hevea brasiliensis Müll. Arg.), named as HbSRGRX1, which encoded 107 amino acid residues with a CPYC [...] Read more.
Glutaredoxins (GRXs) are a class of small oxidoreductases which modulate various biological processes in plants. Here, we isolated a GRX gene from the rubber tree (Hevea brasiliensis Müll. Arg.), named as HbSRGRX1, which encoded 107 amino acid residues with a CPYC active site. Phylogenetic analysis displayed that HbSRGRX1 was more correlated with GRXs from Manihot esculenta Crantz. and Ricinus communis L. HbSRGRX1 was localized in the nuclei of tobacco cells, and its transcripts were preferentially expressed in male flowers and in the high-yield variety Reyan 7-33-97 with strong resistance against cold. The expression levels of HbSRGRX1 significantly decreased in tapping panel dryness (TPD) trees. Furthermore, HbSRGRX1 was regulated by wounding, hydrogen peroxide (H2O2), and multiple hormones. Altogether, these results suggest important roles of HbSRGRX1 in plant development and defense response to TPD and multiple stresses. Full article
(This article belongs to the Special Issue Physiological Responses to Abiotic and Biotic Stress in Forest Trees)
Open AccessArticle Ecophysiological Responses of Carpinus turczaninowii L. to Various Salinity Treatments
Forests 2019, 10(2), 96; https://doi.org/10.3390/f10020096
Received: 10 December 2018 / Revised: 22 January 2019 / Accepted: 22 January 2019 / Published: 25 January 2019
PDF Full-text (2937 KB) | HTML Full-text | XML Full-text
Abstract
Carpinus turczaninowii L., commonly known as hornbeam, has significant economic and ornamental importance and is largely distributed in the northern hemisphere, including parts of China and Korea, with high adaptation to harsh conditions in very unfertile soils. In this study, the ecophysiological responses [...] Read more.
Carpinus turczaninowii L., commonly known as hornbeam, has significant economic and ornamental importance and is largely distributed in the northern hemisphere, including parts of China and Korea, with high adaptation to harsh conditions in very unfertile soils. In this study, the ecophysiological responses of C. turczaninowii seedlings to various salinity stress treatments (NaCl: 0, 17, 34, 51, 68, and 85 mM) were studied for 42 days by determining stress-induced changes in growth parameters and biochemical markers. Salinity stress affected the values of all the examined parameters, both morphological and physiological, and caused the inhibition of plant growth, the degradation of photosynthetic capacity and stomatal behavior, a decrease in the photosynthetic pigments contents and relative water content, an increase in the Malondialdehyde (MDA) content and relative electrolytic conductivity, and the accumulation of Na+ and Cl content. The presence of relatively high concentrations of organic osmolytes, the activation of antioxidant enzymes, and the ionic transport capacity from the root to shoots may represent a constitutive mechanism of defence against stress in C. turczaninowii seedlings. Our results suggest that C. turczaninowii can tolerate salinity at low and moderate concentrations (17–51 mM) under nursery conditions and can be widely used in roadsides, gardens, parks, and other urban areas. Full article
(This article belongs to the Special Issue Physiological Responses to Abiotic and Biotic Stress in Forest Trees)
Figures

Figure 1

Open AccessArticle Low Water Availability Increases Necrosis in Picea abies after Artificial Inoculation with Fungal Root Rot Pathogens Heterobasidion parviporum and Heterobasidion annosum
Forests 2019, 10(1), 55; https://doi.org/10.3390/f10010055
Received: 19 December 2018 / Revised: 9 January 2019 / Accepted: 10 January 2019 / Published: 12 January 2019
PDF Full-text (4521 KB) | HTML Full-text | XML Full-text
Abstract
Research Highlights: Dedicated experiments to investigate how disturbances will affect Heterobasidion sp.—Norway spruce pathosystems are important, in order to develop different strategies to limit the spread of Heterobasidion annosum s.l. under the predicted climate change. Here, we report on a greenhouse experiment to [...] Read more.
Research Highlights: Dedicated experiments to investigate how disturbances will affect Heterobasidion sp.—Norway spruce pathosystems are important, in order to develop different strategies to limit the spread of Heterobasidion annosum s.l. under the predicted climate change. Here, we report on a greenhouse experiment to evaluate the effects of water availability on the infection severity of Heterobasidion parviporum or Heterobasidion annosum, respectively, on Picea abies saplings. Background and Objectives: Changes in climatic conditions and intense logging will continue to promote H. annosum s.l. in conifer forests, increasing annual economic losses. Thus, our aim was to test if disease severity in Norway spruce was greater after infection with H. parviporum or H. annosum in low water availability conditions, compared to seedlings with high water availability. Materials and Methods: We performed inoculation studies of three-year-old saplings in a greenhouse. Saplings were treated as high (+) or low (−) water groups: High water group received double the water amount than the low water group. The necrosis observed after pathogen inoculation was measured and analyzed. Results: The seedling growth was negatively influenced in the lower water group. In addition, the water availability enhanced the necrosis length of H. parviporum in phloem and sapwood (vertical length) in the low water group. H. annosum benefited only in horizontal length in the phloem. Conclusions: Disturbances related to water availability, especially low water conditions, can have negative effects on the tree host and benefit the infection ability of the pathogens in the host. Full article
(This article belongs to the Special Issue Physiological Responses to Abiotic and Biotic Stress in Forest Trees)
Figures

Figure 1

Open AccessArticle Growth and Needle Properties of Young Pinus koraiensis Sieb. et Zucc. Trees across an Elevational Gradient
Forests 2019, 10(1), 54; https://doi.org/10.3390/f10010054
Received: 5 November 2018 / Revised: 6 January 2019 / Accepted: 7 January 2019 / Published: 11 January 2019
PDF Full-text (2723 KB) | HTML Full-text | XML Full-text
Abstract
A better understanding of the response of plant growth to elevational gradients may shed light on how plants respond to environmental variation and on the physiological mechanisms underlying these responses. This study analyzed whole plant growth and physiological and morphological properties of needles [...] Read more.
A better understanding of the response of plant growth to elevational gradients may shed light on how plants respond to environmental variation and on the physiological mechanisms underlying these responses. This study analyzed whole plant growth and physiological and morphological properties of needles in young Pinus koraiensis Sieb. et Zucc. trees at thirteen points along an elevational gradient ranging from 750 to 1350 m above sea level (a.s.l.) at the end of a growing season on Changbai Mountain in northeastern China. Sampling and analyses indicated the following; (1) many needle properties of P. koraiensis varied with forest type along the elevational gradient though some needle properties (e.g., intrinsic water use efficiency, concentration of chlorophyll, and leaf mass per area) did not change with elevation and forest types; (2) growth was significantly influenced by both forest type and elevation and growth of saplings in P. koraiensis and mixed broadleaved forests was greater than that in evergreen forests and increased with elevation in both forest types; (3) in P. koraiensis and mixed broadleaved forests, there were significant correlations between growth properties and light saturation point, leaf water potential, mean within-crown humidity, annual precipitation, cumulative temperature (≥5 C), within-crown air temperature, and atmospheric pressure; while in evergreen forests, the leaf C, leaf P content, net rate of light saturation in photosynthesis, water content of soil, within-crown humidity, annual precipitation, cumulative temperature (≥5 C), within-crown air temperature, and total soil P content displayed a significant relationship with plant growth. These results may help illuminate how P. koraiensis responds to environmental variation and evaluate the adaptive potential of Pinus koraiensis to climate change. Data presented here could also contribute to the more accurate estimation of carbon stocks in this area and to refinement of a plant trait database. Full article
(This article belongs to the Special Issue Physiological Responses to Abiotic and Biotic Stress in Forest Trees)
Figures

Figure 1

Open AccessArticle The Positive Effect of Different 24-epiBL Pretreatments on Salinity Tolerance in Robinia pseudoacacia L. Seedlings
Forests 2019, 10(1), 4; https://doi.org/10.3390/f10010004
Received: 28 November 2018 / Revised: 16 December 2018 / Accepted: 18 December 2018 / Published: 20 December 2018
PDF Full-text (37600 KB) | HTML Full-text | XML Full-text
Abstract
As a brassinosteroid (BR), 24-epibrassinolide (24-epiBL) has been widely used to enhance the resistance of plants to multiple stresses, including salinity. Black locust (Robinia pseudoacacia L.) is a common species in degraded soils. In the current study, plants were pretreated with three [...] Read more.
As a brassinosteroid (BR), 24-epibrassinolide (24-epiBL) has been widely used to enhance the resistance of plants to multiple stresses, including salinity. Black locust (Robinia pseudoacacia L.) is a common species in degraded soils. In the current study, plants were pretreated with three levels of 24-epiBL (0.21, 0.62, or 1.04 µM) by either soaking seeds during the germination phase (Sew), foliar spraying (Spw), or root dipping (Diw) at the age of 6 months. The plants were exposed to salt stress (100 and 200 mM NaCl) via automatic drip-feeding (water content ~40%) for 45 days after each treatment. Increased salinity resulted in a decrease in net photosynthesis rate (Pn), stomatal conductance (Gs), intercellular:ambient CO2 concentration ratio (Ci/Ca), water-use efficiency (WUEi), and maximum quantum yield of photosystem II (PSII) (Fv/Fm). Non-photochemical quenching (NPQ) and thermal dissipation (Hd) were elevated under stress, which accompanied the reduction in the membrane steady index (MSI), water content (RWC), and pigment concentration (Chl a, Chl b, and Chl). Indicators of oxidative stress (i.e., malondialdehyde (MDA) and antioxidant enzymes (peroxidase (POD) and superoxide dismutase (SOD)) in leaves and Na+ content in chloroplasts increased accompanied by a reduction in chloroplastid K+ and Ca2+. At 200 mM NaCl, the chloroplast and thylakoid ultrastructures were severely disrupted. Exogenous 24-epiBL improved MSI, RWC, K+, and Ca2+ content, reduced Na+ levels, maintained chloroplast and thylakoid membrane structures, and enhanced the antioxidant ability in leaves. 24-epiBL also substantially alleviated stress-induced limitations of photosynthetic ability, reflected by elevated chlorophyll fluorescence, pigment levels, and Pn. The positive effects of alleviating salt stress in R. pseudoacacia seedlings in terms of treatment application was Diw > Sew > Spw, and the most positive impacts were seen with 1.04 µM 24-epiBL. These results provide diverse choice for 24-epiBL usage to defend against NaCl stress of a plant. Full article
(This article belongs to the Special Issue Physiological Responses to Abiotic and Biotic Stress in Forest Trees)
Figures

Figure 1

Open AccessArticle Nitrogen Nutrition of European Beech Is Maintained at Sufficient Water Supply in Mixed Beech-Fir Stands
Forests 2018, 9(12), 733; https://doi.org/10.3390/f9120733
Received: 17 October 2018 / Revised: 20 November 2018 / Accepted: 21 November 2018 / Published: 23 November 2018
PDF Full-text (1814 KB) | HTML Full-text | XML Full-text | Supplementary Files
Abstract
Research highlights: Interaction effects of coniferous on deciduous species have been investigated before the background of climate change. Background and objectives: The cultivation of European beech (Fagus sylvatica L.) in mixed stands has currently received attention, since the future performance of beech [...] Read more.
Research highlights: Interaction effects of coniferous on deciduous species have been investigated before the background of climate change. Background and objectives: The cultivation of European beech (Fagus sylvatica L.) in mixed stands has currently received attention, since the future performance of beech in mid-European forest monocultures in a changing climate is under debate. We investigated water relations and nitrogen (N) nutrition of beech in monocultures and mixed with silver-fir (Abies alba Mill.) in the Black Forest at different environmental conditions, and in the Croatian Velebit at the southern distribution limit of beech, over a seasonal course at sufficient water availability. Material and methods: Water relations were analyzed via δ13C signatures, as integrative measures of water supply assuming that photosynthesis processes were not impaired. N nutrition was characterized by N partitioning between soluble N fractions and structural N. Results: In the relatively wet year 2016, water relations of beech leaves, fir needles and roots differed by season, but generally not between beech monocultures and mixed cultivation. At all sites, previous and current year fir needles revealed significantly lower total N contents over the entire season than beech leaves. Fir fine roots exhibited higher or similar amounts of total N compared to needles. Correlation analysis revealed a strong relationship of leaf and root δ13C signatures with soil parameters at the mixed beech stands, but not at pure beech stands. While glutamine (Gln) uptake capacity of beech roots was strongly related to soil N in the monoculture beech stands, arginine (Arg) uptake capacities of beech roots were strongly related to soil N in mixed stands. Conclusions: Leaf N contents indicated a facilitative effect of silver-fir on beech on sites where soil total N concentrations where low, but an indication of competition effect where it was high. This improvement could be partially attributed to protein contents, but not to differences in uptake capacity of an individual N source. From these results it is concluded that despite similar performance of beech trees at the three field sites investigated, the association with silver-fir mediated interactive effects between species association, climate and soil parameters even at sufficient water supply. Full article
(This article belongs to the Special Issue Physiological Responses to Abiotic and Biotic Stress in Forest Trees)
Figures

Figure 1

Open AccessArticle Natural and Synthetic Hydrophilic Polymers Enhance Salt and Drought Tolerance of Metasequoia glyptostroboides Hu and W.C.Cheng Seedlings
Forests 2018, 9(10), 643; https://doi.org/10.3390/f9100643
Received: 6 September 2018 / Revised: 28 September 2018 / Accepted: 11 October 2018 / Published: 15 October 2018
PDF Full-text (5024 KB) | HTML Full-text | XML Full-text
Abstract
We compared the effects of hydrophilic polymer amendments on drought and salt tolerance of Metasequoia glyptostroboides Hu and W.C.Cheng seedlings using commercially available Stockosorb and Luquasorb synthetic hydrogels and a biopolymer, Konjac glucomannan (KGM). Drought, salinity, or the combined stress of both drought [...] Read more.
We compared the effects of hydrophilic polymer amendments on drought and salt tolerance of Metasequoia glyptostroboides Hu and W.C.Cheng seedlings using commercially available Stockosorb and Luquasorb synthetic hydrogels and a biopolymer, Konjac glucomannan (KGM). Drought, salinity, or the combined stress of both drought and salinity caused growth retardation and leaf injury in M. glyptostroboides. Under a range of simulated stress conditions, biopolymers and synthetic hydrogels alleviated growth inhibition and leaf injury, improved photosynthesis, and enhanced whole-plant and unit transpiration. For plants subjected to drought conditions, Stockosorb hydrogel amendment specifically caused a remarkable increase in water supply to roots due to the water retention capacity of the granular polymer. Under saline stress, hydrophilic polymers restricted Na+ and Cl concentrations in roots and leaves. Moreover, root K+ uptake resulted from K+ enrichment in Stockosorb and Luquasorb granules. Synthetic polymers and biopolymers increased the ability of M. glyptostroboides to tolerate combined impacts of drought and salt stress due to their water- and salt-bearing capacities. Similar to the synthetic polymers, the biopolymer also enhanced M. glyptostroboides drought and salt stress tolerance. Full article
(This article belongs to the Special Issue Physiological Responses to Abiotic and Biotic Stress in Forest Trees)
Figures

Figure 1

Open AccessArticle Drought-Affected Populus simonii Carr. Show Lower Growth and Long-Term Increases in Intrinsic Water-Use Efficiency Prior to Tree Mortality
Forests 2018, 9(9), 564; https://doi.org/10.3390/f9090564
Received: 20 August 2018 / Revised: 11 September 2018 / Accepted: 12 September 2018 / Published: 13 September 2018
PDF Full-text (3233 KB) | HTML Full-text | XML Full-text
Abstract
The Three-North Shelter Forest (TNSF) is a critical ecological barrier against sandstorms in northern China, but has shown extensive decline and death in Populus simonii Carr. in the last decade. We investigated the characteristics—tree-ring width, basal area increment (BAI), carbon isotope signature ( [...] Read more.
The Three-North Shelter Forest (TNSF) is a critical ecological barrier against sandstorms in northern China, but has shown extensive decline and death in Populus simonii Carr. in the last decade. We investigated the characteristics—tree-ring width, basal area increment (BAI), carbon isotope signature (13Ccor), and intrinsic water-use efficiency (iWUE)—of now-dead, dieback, and non-dieback trees in TNSF shelterbelts of Zhangbei County. Results from the three groups were compared to understand the long-term process of preceding drought-induced death and to identify potential early-warning proxies of drought-triggered damage. The diameter at breast height (DBH) was found to decrease with the severity of dieback, showing an inverse relationship. In all three groups, both tree-ring width and BAI showed quadratic relationships with age, and peaks earlier in the now-dead and dieback groups than in the non-dieback group. The tree-ring width and BAI became significantly lower in the now-dead and dieback groups than in the non-dieback group from 17 to 26 years before death, thus, these parameters can serve as early-warning signals for future drought-induced death. The now-dead and dieback groups had significantly higher δ13Ccor and iWUEs than the non-dieback group at 7–16 years prior to the mortality, indicating a more conservative water-use strategy under drought stress compared with non-dieback trees, possibly at the cost of canopy defoliation and long-term shoot dieback. The iWUE became significantly higher in the now-dead group than in the dieback group at 0–7 years before death, about 10 years later than the divergence of BAI. After the iWUE became significantly different among the groups, the now-dead trees showed lower growth and died over the next few years. This indicates that, for the TNSF shelterbelts studied, an abrupt iWUE increase can be used as a warning signal for acceleration of impending drought-induced tree death. In general, we found that long-term drought decreased growth and increased iWUE of poplar tree. Successive droughts could drive dieback and now-dead trees to their physiological limits of drought tolerance, potentially leading to decline and mortality episodes. Full article
(This article belongs to the Special Issue Physiological Responses to Abiotic and Biotic Stress in Forest Trees)
Figures

Figure 1

Open AccessArticle Growth and Physicochemical Changes of Carpinus betulus L. Influenced by Salinity Treatments
Forests 2018, 9(6), 354; https://doi.org/10.3390/f9060354
Received: 7 May 2018 / Revised: 12 June 2018 / Accepted: 12 June 2018 / Published: 14 June 2018
Cited by 1 | PDF Full-text (2539 KB) | HTML Full-text | XML Full-text
Abstract
Carpinus betulus L. is a deciduous tree widely distributed in Europe with strong adaptation, and it plays a key role in landscaping and timbering because of its variety of colors and shapes. Recently introduced to China for similar purposes, this species needs further [...] Read more.
Carpinus betulus L. is a deciduous tree widely distributed in Europe with strong adaptation, and it plays a key role in landscaping and timbering because of its variety of colors and shapes. Recently introduced to China for similar purposes, this species needs further study as to its physiological adaptability under various soil salinity conditions. In this study, the growth and physicochemical changes of C. betulus seedlings cultivated in soil under six different levels of salinity stress (NaCl: 0, 17, 34, 51, 68, and 85 mM) were studied for 14, 28 and 42 days. The plant growth and gas exchange parameters were not changed much by 17 and 34 mM NaCl, but they were significantly affected after treatments with 51 ~ 85 mM NaCl. The chlorophyll content was not significantly affected at 17 and 34 mM salinity, and the relative water content, malondialdehyde content and cell membrane stability of C. betulus did not change obviously under the 17 and 34 mM treatments, indicating that C. betulus is able to adapt to low-salinity conditions. The amount of osmotic adjustment substances and the antioxidant enzyme activity of C. betulus increased after 14 and 28 days and then decreased with increasing salinity gradients, but the proline content was increased during the entire time for different salinities. The Na content of different organs increased in response to salinity, and the K/Na, Ca/Na, and Mg/Na ratios were significantly affected by salinity. These results suggest that the ability of C. betulus to synthesize osmotic substances and enzymatic antioxidants may be impaired under severe saline conditions (68 ~ 85 mM NaCl) but that it can tolerate and accumulate salt at low salinity concentrations (17 ~ 34 mM NaCl). Such information is useful for land managers considering introducing this species to sites with various soil salinity conditions. Full article
(This article belongs to the Special Issue Physiological Responses to Abiotic and Biotic Stress in Forest Trees)
Figures

Figure 1

Open AccessArticle Non-Structural Carbohydrate Dynamics in Leaves and Branches of Pinus massoniana (Lamb.) Following 3-Year Rainfall Exclusion
Forests 2018, 9(6), 315; https://doi.org/10.3390/f9060315
Received: 17 May 2018 / Revised: 31 May 2018 / Accepted: 31 May 2018 / Published: 1 June 2018
Cited by 1 | PDF Full-text (2791 KB) | HTML Full-text | XML Full-text
Abstract
Drought-induced tree mortality is an increasing and global ecological problem. Stored non-structural carbohydrates (NSCs) may be a key determinant of drought resistance, but most existing studies are temporally limited. In this study, a 3-year 100% rainfall exclusion manipulation experiment was conducted to evaluate [...] Read more.
Drought-induced tree mortality is an increasing and global ecological problem. Stored non-structural carbohydrates (NSCs) may be a key determinant of drought resistance, but most existing studies are temporally limited. In this study, a 3-year 100% rainfall exclusion manipulation experiment was conducted to evaluate the response of NSC dynamics to drought stress in 25-year-old Pinus massoniana leaves and branches. The results showed: (1) compared with the control condition, leaf NSC concentration in the drought treatment increased 90% in the early stage (days 115–542) (p < 0.05), and then decreased 15% in the late stage (days 542–1032), which was attributed to water limitation instead of phenology; (2) the response of leaf NSCs to drought was more significant than branch NSCs, demonstrating a time lag effect; and (3) the response of P. massoniana to mild drought stress was to increase the soluble sugars and starch in the early stage, followed by an increase in soluble sugars caused by decreasing starch in the later stress period. Considering these results, mid-term drought stress had no significant effect on the total NSC concentration in P. massoniana, removing carbon storage as a potential adaptation to drought stress. Full article
(This article belongs to the Special Issue Physiological Responses to Abiotic and Biotic Stress in Forest Trees)
Figures

Figure 1

Forests EISSN 1999-4907 Published by MDPI AG, Basel, Switzerland RSS E-Mail Table of Contents Alert
Back to Top