Plant Growth-Promoting Rhizobacteria Enhance Sweet Cherry Root System Development Through the Production of Volatile Organic Compounds
Abstract
1. Introduction
2. Materials and Methods
2.1. Test Strains and Plants
2.2. Co-Cultivation of Strains with Plants
2.3. Determination of Plant Growth Indicators
2.4. Determination of Gene Expression Levels Related to Auxin Biosynthesis in Cherry Roots
2.5. Microbial Diversity and Community Composition
2.6. Statistical Analysis
3. Results
3.1. Effects of VOCs Produced by Different Bacterial Strains on the Growth of Cherry Seedlings
3.2. Effects of VOCs Produced by Different Bacterial Strains on the Expression of Auxin-Biosynthesis-Related Genes in Cherry Roots
3.3. Effects of VOCs Produced by Different Bacterial Strains on Bacterial Diversity in Cherry Rhizosphere Soil
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Prinsi, B.; Negri, A.S.; Espen, L.; Piagnani, M.C. Proteomic comparison of fruit ripening between ‘Hedelfinger’ sweet cherry (Prunus avium L.) and its somaclonal variant ‘HS’. J. Agric. Food Chem. 2016, 64, 4171–4181. [Google Scholar] [CrossRef] [PubMed]
- Zhou, W.; Qin, X.; Lyu, D.; Qin, S. Effect of glucose on the soil bacterial diversity and function in the rhizosphere of Cerasus sachalinensis. Hortic. Plant J. 2021, 7, 307–317. [Google Scholar] [CrossRef]
- Yuri, J.A.; Simeone, D.; Fuentes, M.; Sepúlveda, Á.; Palma, M.; Moya, M.; Sánchez-Contreras, J. Reduced Root Volume at Establishment, Canopy Growth and Fruit Production in ‘Lapins’/‘Colt’ and ‘Regina’/‘Gisela 12’ Sweet Cherry Trees. Horticulturae 2024, 10, 579. [Google Scholar] [CrossRef]
- Wedegaertner, K.; Black, B.; Safre, A.; Lilligren, C.; Cardon, G.; Torres-Rua, A. Assessing the relationship between soil variability, canopy density, and yield in Utah tart cherry orchards. Acta Hortic. 2023, 1395, 157–162. [Google Scholar] [CrossRef]
- Guo, Y.; Wang, J. Spatiotemporal changes of chemical fertilizer application and its environmental risks in China from 2000 to 2019. Int. J. Environ. Res. Public Health 2021, 18, 11911. [Google Scholar] [CrossRef]
- Pahalvi, H.N.; Rafiya, L.; Rashid, S.; Nisar, B.; Kamili, A.N. Chemical Fertilizers and Their Impact on Soil Health. In Microbiota and Biofertilizers, Vol 2: Ecofriendly Tools for Reclamation of Degraded Soil Environs; Dar, G.H., Bhat, R.A., Mehmood, M.A., Hakeem, K.R., Eds.; Springer International Publishing: Cham, Switzerland, 2021; pp. 1–20. ISBN 978-3-030-61010-4. [Google Scholar]
- Wang, P.; Zhang, W.; Zhu, Y.; Liu, Y.; Li, Y.; Cao, S.; Hao, Q.; Liu, S.; Kong, X.; Han, Z.; et al. Evolution of groundwater hydrochemical characteristics and formation mechanism during groundwater recharge: A case study in the Hutuo River alluvial–pluvial fan, North China Plain. Sci. Total Environ. 2024, 915, 170159. [Google Scholar] [CrossRef]
- Albini, D.; Lester, L.; Sanders, P.; Hughes, J.; Jackson, M.C. The combined effects of treated sewage discharge and land use on rivers. Glob. Change Biol. 2023, 29, 6415–6422. [Google Scholar] [CrossRef]
- Sun, B.; Zhang, L.; Yang, L.; Zhang, F.; Norse, D.; Zhu, Z. Agricultural non-point source pollution in China: Causes and mitigation measures. AMBIO 2012, 41, 370–379. [Google Scholar] [CrossRef]
- Edenhofer, O. Climate Change 2014: Mitigation of Climate Change; Cambridge University Press: Cambridge, UK, 2015; Volume 3, ISBN 110705821X. [Google Scholar]
- Deng, C.; Zhang, N.; Liang, X.; Huang, T.; Li, B. Bacillus aryabhattai LAD impacts rhizosphere bacterial community structure and promotes maize plant growth. J. Sci. Food. Agric. 2022, 102, 6650–6657. [Google Scholar] [CrossRef]
- Deng, C.; Liang, X.; Zhang, N.; Li, B.; Wang, X.; Zeng, N. Molecular mechanisms of plant growth promotion for methylotrophic Bacillus aryabhattai LAD. Front. Microbiol. 2022, 13, 917382. [Google Scholar] [CrossRef]
- Deng, C.; Zeng, N.; Li, C.; Pang, J.; Zhang, N.; Li, B. Mechanisms of ROS-mediated interactions between Bacillus aryabhattai LAD and maize roots to promote plant growth. BMC Microbiol. 2024, 24, 327. [Google Scholar] [CrossRef] [PubMed]
- Prakash, R.; Subramani, R.; Krodi; Anusha; Berde, C.V.; Chandrasekhar, T.; Prathyusha, A.M.V.N.; Kariali, E.; Bramhachari, P.V. Rhizobacteriome: Plant Growth-Promoting Traits and Its Functional Mechanism in Plant Growth, Development, and Defenses. In Understanding the Microbiome Interactions in Agriculture and the Environment; Veera Bramhachari, P., Ed.; Springer Nature: Singapore, 2022; pp. 315–344. ISBN 978-981-19-3696-8. [Google Scholar]
- Kapadia, C.; Patel, N.; Rana, A.; Vaidya, H.; Alfarraj, S.; Ansari, M.J.; Gafur, A.; Poczai, P.; Sayyed, R.Z. Evaluation of Plant Growth-Promoting and Salinity Ameliorating Potential of Halophilic Bacteria Isolated From Saline Soil. Front. Plant Sci. 2022, 13, 946217. [Google Scholar] [CrossRef] [PubMed]
- He, Y.; Guo, W.; Peng, J.; Guo, J.; Ma, J.; Wang, X.; Zhang, C.; Jia, N.; Wang, E.; Hu, D.; et al. Volatile Organic Compounds of Streptomyces sp. TOR3209 Stimulated Tobacco Growth by Up-Regulating the Expression of Genes Related to Plant Growth and Development. Front. Microbiol. 2022, 13, 891245. [Google Scholar] [CrossRef] [PubMed]
- Jiang, L.; Lee, M.H.; Kim, C.Y.; Kim, S.W.; Kim, P.I.; Min, S.R.; Lee, J. Plant Growth Promotion by Two Volatile Organic Compounds Emitted From the Fungus Cladosporium halotolerans NGPF1. Front. Plant Sci. 2021, 12, 794349. [Google Scholar] [CrossRef]
- Tilocca, B.; Cao, A.; Migheli, Q. Scent of a Killer: Microbial Volatilome and Its Role in the Biological Control of Plant Pathogens. Front. Microbiol. 2020, 11, 41. [Google Scholar] [CrossRef]
- Li, P.; Kong, W.; Wu, X.; Zhang, Y. Volatile Organic Compounds of the Plant Growth-Promoting Rhizobacteria JZ-GX1 Enhanced the Tolerance of Robinia pseudoacacia to Salt Stress. Front. Plant Sci. 2021, 12, 753332. [Google Scholar] [CrossRef]
- Zhao, D.; Jiao, J.; Du, B.; Liu, K.; Wang, C.; Ding, Y. Volatile organic compounds from Lysinibacillus macroides regulating the seedling growth of Arabidopsis thaliana. Physiol. Mol. Biol. Plants 2022, 28, 1997–2009. [Google Scholar] [CrossRef]
- Zheng, D.; Ren, F.; Yin, R.; Li, L.; Cui, H.; Shen, H.; Chen, X.; Gao, N. Transcriptome Analysis Reveals Impact of S-Methyl Thioacetate on Tomato Seedling Growth. J. Plant Growth Regul. 2025, 1–15. [Google Scholar] [CrossRef]
- Kumar, D.; Ali, M.; Sharma, N.; Sharma, R.; Manhas, R.K.; Ohri, P. Unboxing PGPR-mediated management of abiotic stress and environmental cleanup: What lies inside? Environ. Sci. Pollut. Res. 2024, 31, 47423–47460. [Google Scholar] [CrossRef]
- Cai, Y.; Tao, H.; Gaballa, A.; Pi, H.; Helmann, J.D. The extracytoplasmic sigma factor σX supports biofilm formation and increases biocontrol efficacy in Bacillus velezensis 118. Sci. Rep. 2025, 15, 5315. [Google Scholar] [CrossRef]
- Velázquez-Becerra, C.; Macías-Rodríguez, L.I.; López-Bucio, J.; Altamirano-Hernández, J.; Flores-Cortez, I.; Valencia-Cantero, E. A volatile organic compound analysis from Arthrobacter agilis identifies dimethylhexadecylamine, an amino-containing lipid modulating bacterial growth and Medicago sativa morphogenesis in vitro. Plant Soil 2011, 339, 329–340. [Google Scholar] [CrossRef]
- Hung, R.; Lee, S.; Bennett, J.W. Arabidopsis thaliana as a model system for testing the effect of Trichoderma volatile organic compounds. Fungal Ecol. 2013, 6, 19–26. [Google Scholar] [CrossRef]
- Del Carmen Orozco-Mosqueda, M.; Velázquez-Becerra, C.; Macías-Rodríguez, L.I.; Santoyo, G.; Flores-Cortez, I.; Alfaro-Cuevas, R.; Valencia-Cantero, E. Arthrobacter agilis UMCV2 induces iron acquisition in Medicago truncatula (strategy I plant) in vitro via dimethylhexadecylamine emission. Plant Soil 2013, 362, 51–66. [Google Scholar] [CrossRef]
- Kallenbach, M.; Oh, Y.; Eilers, E.J.; Veit, D.; Baldwin, I.T.; Schuman, M.C. A robust, simple, high-throughput technique for time-resolved plant volatile analysis in field experiments. Plant J. 2014, 78, 1060–1072. [Google Scholar] [CrossRef]
- Ryu, C.; Farag, M.A.; Hu, C.; Reddy, M.S.; Wei, H.; Paré, P.W.; Kloepper, J.W. Bacterial volatiles promote growth in Arabidopsis. Proc. Natl. Acad. Sci. USA 2003, 100, 4927–4932. [Google Scholar] [CrossRef]
- Zipfel, C. Plant pattern-recognition receptors. Trends Immunol. 2014, 35, 345–351. [Google Scholar] [CrossRef]
- Liu, S.; Xie, J.; Luan, W.; Liu, C.; Chen, X.; Chen, D. Papiliotrema flavescens, a plant growth-promoting fungus, alters root system architecture and induces systemic resistance through its volatile organic compounds in Arabidopsis. Plant Physiol. Biochem. 2024, 208, 108474. [Google Scholar] [CrossRef]
- Meldau, D.G.; Meldau, S.; Hoang, L.H.; Underberg, S.; Wünsche, H.; Baldwin, I.T. Dimethyl Disulfide Produced by the Naturally Associated Bacterium Bacillus sp. B55 Promotes Nicotiana attenuata Growth by Enhancing Sulfur Nutrition. Plant Cell 2013, 25, 2731–2747. [Google Scholar] [CrossRef]
- Zou, C.; Li, Z.; Yu, D. Bacillus megaterium strain XTBG34 promotes plant growth by producing 2-pentylfuran. J. Microbiol. 2010, 48, 460–466. [Google Scholar] [CrossRef]
- Fincheira, P.; Quiroz, A. Microbial volatiles as plant growth inducers. Microbiol. Res. 2018, 208, 63–75. [Google Scholar] [CrossRef]
- Raza, W.; Jiang, G.; Eisenhauer, N.; Huang, Y.; Wei, Z.; Shen, Q.; Kowalchuk, G.A.; Jousset, A. Microbe-induced phenotypic variation leads to overyielding in clonal plant populations. Nat. Ecol. Evol. 2024, 8, 392–399. [Google Scholar] [CrossRef] [PubMed]
- Xia, H.; Liu, H.; Gong, P.; Li, P.; Xu, Q.; Zhang, Q.; Sun, M.; Meng, Q.; Ye, F.; Yin, W. Study of the mechanism by which Bacillus subtilis improves the soil bacterial community environment in severely saline-alkali cotton fields. Sci. Total Environ. 2025, 958, 178000. [Google Scholar] [CrossRef] [PubMed]
- Tzipilevich, E.; Russ, D.; Dangl, J.L.; Benfey, P.N. Plant immune system activation is necessary for efficient root colonization by auxin-secreting beneficial bacteria. Cell Host Microbe 2021, 29, 1507–1520. [Google Scholar] [CrossRef]
- Jiang, C.; Xie, Y.; Zhu, K.; Wang, N.; Li, Z.; Yu, G.; Guo, J. Volatile organic compounds emitted by Bacillus sp. JC03 promote plant growth through the action of auxin and strigolactone. Plant Growth Regul. 2019, 87, 317–328. [Google Scholar] [CrossRef]
- Casanova-Sáez, R.; Voß, U. Auxin metabolism controls developmental decisions in land plants. Trends Plant Sci. 2019, 24, 741–754. [Google Scholar] [CrossRef]
- Peer, W.A. From perception to attenuation: Auxin signalling and responses. Curr. Opin. Plant Biol. 2013, 16, 561–568. [Google Scholar] [CrossRef]
- Hagen, G. Auxin signal transduction. Essays Biochem. 2015, 58, 1–12. [Google Scholar]
- Qiu, T.; Qi, M.; Ding, X.; Zheng, Y.; Zhou, T.; Chen, Y.; Han, N.; Zhu, M.; Bian, H.; Wang, J. The SAUR41 subfamily of SMALL AUXIN UP RNA genes is abscisic acid inducible to modulate cell expansion and salt tolerance in Arabidopsis thaliana seedlings. Ann. Bot. 2020, 125, 805–819. [Google Scholar] [CrossRef]
- Lavy, M.; Estelle, M. Mechanisms of auxin signaling. Development 2016, 143, 3226–3229. [Google Scholar] [CrossRef]
- Guilfoyle, T.J.; Hagen, G. Auxin response factors. Curr. Opin. Plant Biol. 2007, 10, 453–460. [Google Scholar] [CrossRef]
- Chandler, J.W. Auxin response factors. Plant Cell Environ. 2016, 39, 1014–1028. [Google Scholar] [CrossRef] [PubMed]
- Zwiewka, M.; Bilanovičová, V.; Seifu, Y.W.; Nodzyński, T. The Nuts and Bolts of PIN Auxin Efflux Carriers. Front. Plant Sci. 2019, 10, 985. [Google Scholar] [CrossRef] [PubMed]
- Wojtaczka, P.; Ciarkowska, A.; Starzynska, E.; Ostrowski, M. The GH3 amidosynthetases family and their role in metabolic crosstalk modulation of plant signaling compounds. Phytochemistry 2022, 194, 113039. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Mei, X.; Wei, Z.; Raza, W.; Shen, Q. Effect of bacterial intra-species community interactions on the production and activity of volatile organic compounds. Soil Ecol. Lett. 2021, 3, 32–41. [Google Scholar] [CrossRef]
- He, Q.; Zhang, Q.; Li, M.; He, J.; Lin, B.; Wu, N.; Chen, J.; Liu, X.; Dong, X. Harnessing diurnal dynamics: Understanding the influence of light–dark cycle on algal-bacterial symbiotic system under aniline stress. Bioresour. Technol. 2025, 416, 131796. [Google Scholar] [CrossRef]
- Zhou, Z.; Wang, X.; Chen, C.; Cui, Z.; Li, A.; He, W.; Guo, Y.; Zeng, Y. Agroforestry system: Polygonatum odoratum and Vernicia fordii intercropping effects on crop quality, soil nutrients and microbial community structure. Agrofor. Syst. 2025, 99, 85. [Google Scholar] [CrossRef]
- Zhou, X.; Zhang, J.; Shi, J.; Khashi U Rahman, M.; Liu, H.; Wei, Z.; Wu, F.; Dini-Andreote, F. Volatile-mediated interspecific plant interaction promotes root colonization by beneficial bacteria via induced shifts in root exudation. Microbiome 2024, 12, 207. [Google Scholar] [CrossRef]
- Banerjee, S.; Schlaeppi, K.; Van Der Heijden, M.G. Keystone taxa as drivers of microbiome structure and functioning. Nat. Rev. Microbiol. 2018, 16, 567–576. [Google Scholar] [CrossRef]
- Kaufmann, H.; Salvador, C.; Salazar, V.W.; Cruz, N.; Dias, G.M.; Tschoeke, D.; Campos, L.; Sawabe, T.; Miyazaki, M.; Maruyama, F. Genomic Repertoire of Twenty-Two Novel Vibrionaceae Species Isolated from Marine Sediments. Microb. Ecol. 2025, 88, 36. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zeng, N.; Gai, R.; Wang, D.; Pang, J.; Zhang, D.; Ge, J.; Bi, X.; Zhang, Z.; Zhang, N.; Li, B. Plant Growth-Promoting Rhizobacteria Enhance Sweet Cherry Root System Development Through the Production of Volatile Organic Compounds. Foods 2025, 14, 2369. https://doi.org/10.3390/foods14132369
Zeng N, Gai R, Wang D, Pang J, Zhang D, Ge J, Bi X, Zhang Z, Zhang N, Li B. Plant Growth-Promoting Rhizobacteria Enhance Sweet Cherry Root System Development Through the Production of Volatile Organic Compounds. Foods. 2025; 14(13):2369. https://doi.org/10.3390/foods14132369
Chicago/Turabian StyleZeng, Nan, Rutao Gai, Dandan Wang, Jiahe Pang, Dingcun Zhang, Junliang Ge, Xinyue Bi, Zhiyong Zhang, Ning Zhang, and Bingxue Li. 2025. "Plant Growth-Promoting Rhizobacteria Enhance Sweet Cherry Root System Development Through the Production of Volatile Organic Compounds" Foods 14, no. 13: 2369. https://doi.org/10.3390/foods14132369
APA StyleZeng, N., Gai, R., Wang, D., Pang, J., Zhang, D., Ge, J., Bi, X., Zhang, Z., Zhang, N., & Li, B. (2025). Plant Growth-Promoting Rhizobacteria Enhance Sweet Cherry Root System Development Through the Production of Volatile Organic Compounds. Foods, 14(13), 2369. https://doi.org/10.3390/foods14132369