energies-logo

Journal Browser

Journal Browser

Advanced Energy Storage Technologies

A special issue of Energies (ISSN 1996-1073). This special issue belongs to the section "D: Energy Storage and Application".

Deadline for manuscript submissions: closed (30 June 2025) | Viewed by 3463

Special Issue Editors


E-Mail Website
Guest Editor
School of Renewable Energy, Inner Mongolia University of Technology, Ordos 017010, China
Interests: energy storage technology; renewable energy utilization technology
Special Issues, Collections and Topics in MDPI journals

E-Mail Website
Guest Editor
Institute of Engineering Thermophysics, Chinese Academy of Sciences, Beijing 100190, China
Interests: energy storage and conversion; thermochemical energy storage; long-term energy storage solutions utilizing hydrogen–thermal co-storage techniques and regulatory strategies

E-Mail Website
Guest Editor
Jiangsu Key Laboratory of Process Enhancement and New Energy Equipment Technology, School of Mechanical and Power Engineering, Nanjing Tech University, Nanjing 211816, China
Interests: phase-change materials

E-Mail Website
Guest Editor
Beijing Key Lab of Heating, Gas Supply, Ventilating, and Air Conditioning Engineering, Beijing University of Civil Engineering and Architecture, Beijing 100044, China
Interests: thermal energy storage; molten salt; phase-change composite

Special Issue Information

Dear Colleagues,

With the continuous growth of global energy demand and the transformation of energy structure, the importance of energy storage technology in fields such as power systems, new energy vehicles, and renewable energy is increasingly prominent. This Special Issue delves into the latest research advancements, key materials, system design, application scenarios, and policies and regulations related to energy storage technology. The included articles cover a range of energy storage technologies including electrochemical storage, pumped hydro storage, supercapacitors, thermal storage, cold storage, and flywheels, aiming to provide theoretical support and practical guidance for technological innovation and industrial development in the energy storage sector, and to facilitate the efficient utilization and sustainable development of energy.

Topics of interest for publication include, but are not limited to:

  • Innovation in Energy Storage Materials
  • Energy storage system design
  • Electrochemical energy storage technology
  • Physical energy storage technology
  • Heat and cold storage technology
  • Supercapacitors and Hybrid Energy Storage Systems
  • Application scenarios of energy storage technology
  • Economic analysis of energy storage technology
  • Policies, regulations, and market environment
  • Energy storage safety
  • Environmental Impact and Life Cycle Assessment of Energy Storage Technology
  • Future Development Trends of Energy Storage Technology
  • Standardization and certification 

Prof. Dr. Chun Chang
Dr. Zhiwei Ge
Prof. Dr. Hao Peng
Prof. Dr. Yaxuan Xiong
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Energies is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2600 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • energy storage
  • battery technology
  • lithium-ion battery
  • sodium-ion battery
  • lead-acid battery
  • flow battery
  • supercapacitor
  • flywheel storage
  • pumped hydro storage
  • compressed air energy storage (CAES)
  • thermal storage
  • phase change materials
  • energy management systems (EMS)
  • battery management systems (BMS)
  • renewable energy integration
  • grid storage
  • electric vehicle (EV) batteries
  • peak shaving
  • energy efficiency
  • sustainability
  • life cycle analysis
  • safety and reliability
  • regulatory policies
  • market analysis
  • cost effectiveness
  • energy density
  • power density

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • Reprint: MDPI Books provides the opportunity to republish successful Special Issues in book format, both online and in print.

Further information on MDPI's Special Issue policies can be found here.

Published Papers (6 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

Jump to: Review

15 pages, 1687 KiB  
Article
Catalytic Role of Nickel in Hydrogen Storage and Release Using Dibenzyltoluene as a Liquid Organic Hydrogen Carrier
by Jesús Rodríguez Ruiz, Nuria García-Mancha, Roberto Campana and Carlos Tardío
Energies 2025, 18(16), 4429; https://doi.org/10.3390/en18164429 - 20 Aug 2025
Viewed by 271
Abstract
Liquid Organic Hydrogen Carriers (LOHCs) represent a promising technology for the safe storage and transport of hydrogen. Its technical development largely depends on the catalysts used in the hydrogenation and dehydrogenation processes. Typically, noble metal-based monometallic catalysts are employed, although they present limitations [...] Read more.
Liquid Organic Hydrogen Carriers (LOHCs) represent a promising technology for the safe storage and transport of hydrogen. Its technical development largely depends on the catalysts used in the hydrogenation and dehydrogenation processes. Typically, noble metal-based monometallic catalysts are employed, although they present limitations in terms of cost and availability. This study uses the DBT system to explore the potential of nickel (Ni) as a catalytic alternative. In dehydrogenation, its role as an additive in low-loaded Pt-based catalysts (0.25 wt%) was evaluated, showing a significant increase in activity, with dehydrogenation levels exceeding 95%, compared to 82% obtained with monometallic Pt catalysts. This improvement is attributed to the formation of Pt-Ni alloys. On the other hand, although the bimetallic systems were not effective in hydrogenation, a commercial Ni/Al2O3-SiO2 catalyst was tested, achieving hydrogenation degrees of 80% in just 40 min, after pressure and catalyst loading optimization. These results position Ni as a key component in LOHC catalysis, either as an effective additive in Pt-based systems or as an active metal itself, due to its excellent performance and low cost. This paves the way for economically viable and efficient catalytic solutions for hydrogen storage applications, bridging the gap between performance and practicality. Full article
(This article belongs to the Special Issue Advanced Energy Storage Technologies)
Show Figures

Figure 1

26 pages, 4276 KiB  
Article
A Data-Driven ML Model for Sand Channel Prediction from Well Logs for UTES Site Optimization and Thermal Breakthrough Prevention: Hungary Case Study
by Hawkar Ali Abdulhaq, János Geiger, István Vass, Tivadar M. Tóth, Gábor Bozsó and János Szanyi
Energies 2025, 18(16), 4230; https://doi.org/10.3390/en18164230 - 8 Aug 2025
Viewed by 570
Abstract
This study presents a data-driven approach to predict the three-dimensional distribution of sand-rich channels in hydrocarbon reservoirs using well log data, aiming to optimize site selection for Underground Thermal Energy Storage (UTES) and manage hot and cold well pairs effectively. Leveraging detailed petrophysical [...] Read more.
This study presents a data-driven approach to predict the three-dimensional distribution of sand-rich channels in hydrocarbon reservoirs using well log data, aiming to optimize site selection for Underground Thermal Energy Storage (UTES) and manage hot and cold well pairs effectively. Leveraging detailed petrophysical datasets from 128 hydrocarbon exploration wells within the Szolnok Formation in southern Hungary, the developed machine-learning workflow—combining XGBoost regression and spatial residual correction—accurately delineated permeable channel systems suitable for thermal energy injection and extraction. The model achieved robust predictive performance (R2 = 0.92; RMSE = 0.24), and correlation analyses confirmed significant relationships between predicted channels and sand content and shale content. Clearly identified high-permeability channel zones facilitated strategic well placement, significantly reducing the risk of premature thermal breakthrough and enhancing the reliability and efficiency of UTES operations. Full article
(This article belongs to the Special Issue Advanced Energy Storage Technologies)
Show Figures

Graphical abstract

20 pages, 3578 KiB  
Article
Performance Improvement of Proton Exchange Membrane Fuel Cell by a New Coupling Channel in Bipolar Plate
by Qingsong Song, Shuochen Yang, Hongtao Li, Yunguang Ji, Dajun Cai, Guangyu Wang and Yuan Liufu
Energies 2025, 18(15), 4068; https://doi.org/10.3390/en18154068 - 31 Jul 2025
Viewed by 228
Abstract
The geometric design of flow channels in bipolar plates is one of the critical features of proton exchange membrane fuel cells (PEMFCs), as it determines the power output of the fuel cell and has a significant impact on its performance and durability. The [...] Read more.
The geometric design of flow channels in bipolar plates is one of the critical features of proton exchange membrane fuel cells (PEMFCs), as it determines the power output of the fuel cell and has a significant impact on its performance and durability. The function of the bipolar plate is to guide the transfer of reactant gases to the gas diffusion layer and catalytic layer inside the PEMFC, while removing unreacted gases and gas–liquid byproducts. Therefore, the design of the bipolar plate flow channel is directly related to the water and thermal management of the PEMFC. In order to improve the comprehensive performance of PEMFCs and ensure their safe and stable operation, it is necessary to design the flow channels in bipolar plates rationally and effectively. This study addresses the limitations of existing bipolar plate flow channels by proposing a new coupling of serpentine and radial channels. The distribution of oxygen, water concentrations, and temperature inside the channel is simulated using the multi-physics simulation software COMSOL Multiphysics 6.0. The performance of this novel design is compared with conventional flow channels, with a particular focus on the pressure drop and current density to evaluate changes in the output performance of the PEMFC. The results show that the maximum current density of this novel design is increased by 67.36% and 10.43% compared to straight channel and single serpentine channels, respectively. The main contribution of this research is the innovative design of a new coupling of serpentine and radial channels in bipolar plates, which improves the overall performance of the PEMFC. This study provides theoretical support for the design of bipolar plate flow channels in PEMFCs and holds significant importance for the green development of energy. Full article
(This article belongs to the Special Issue Advanced Energy Storage Technologies)
Show Figures

Figure 1

15 pages, 6231 KiB  
Article
Alternative Sensing for State-of-Charge Estimation of Latent Heat Thermal Energy Storage
by James Wilson, Robert J. Barthorpe and Furkan Terzioglu
Energies 2025, 18(11), 2853; https://doi.org/10.3390/en18112853 - 29 May 2025
Cited by 1 | Viewed by 448
Abstract
Thermal energy storage (TES) is likely to play a significant role in the decarbonisation of domestic heat, allowing consumers to shift their energy consumption away from peak demand periods and reducing overall strain on the grid. Phase change materials (PCMs) are a promising [...] Read more.
Thermal energy storage (TES) is likely to play a significant role in the decarbonisation of domestic heat, allowing consumers to shift their energy consumption away from peak demand periods and reducing overall strain on the grid. Phase change materials (PCMs) are a promising option for TES, in which energy can be stored in the latent heat of the melting of the PCM; these offer greater storage densities than sensible heat TES and have the benefit of releasing stored heat at a consistent temperature (the crystallisation temperature of the PCM). One of the key difficulties for PCM-based TES is state of charge (SoC) estimation (the estimation of the proportion of energy stored in the TES unit up to its maximum capacity), particularly during idle periods while the unit is storing heat. SoC estimation is key to the implementation of TES, as it enables the effective control of the units. The use of a resonator within the PCM for SoC estimation could potentially provide a global estimate of the SoC, since the resonator passes through the full depth of the PCM in the unit. The SoC could be inferred by measuring the vibrational response of the resonator under excitation, which varies depending on the melt state of the PCM. This paper presents findings from a test rig investigating this proposal, including discussions on the features required from the resonator response for SoC inference. Full article
(This article belongs to the Special Issue Advanced Energy Storage Technologies)
Show Figures

Figure 1

12 pages, 2575 KiB  
Article
Visualization Investigation of Heat Transfer Behavior in a Flat-Tube Shaped Heat Pipe
by Jue Li, Ruofan Wang, Ting Xia and Haijun Chen
Energies 2025, 18(5), 1219; https://doi.org/10.3390/en18051219 - 2 Mar 2025
Viewed by 897
Abstract
Unveiling the heat transfer behavior of solar collectors in concentrating solar thermochemical energy storage is crucial for harnessing full-spectrum solar light. In this study, a glass Flat Tube-Shaped Heat Pipe (FT-SHP) was developed, and a visualization experimental platform was established to investigate its [...] Read more.
Unveiling the heat transfer behavior of solar collectors in concentrating solar thermochemical energy storage is crucial for harnessing full-spectrum solar light. In this study, a glass Flat Tube-Shaped Heat Pipe (FT-SHP) was developed, and a visualization experimental platform was established to investigate its internal operation mechanisms and heat transfer characteristics. The results revealed that the liquid filling ratio (FR) significantly affects the heat transfer performance, with an optimal value identified as 25%. As the heat flow temperature in the evaporation section increased, both the Bubble Growing Frequency (BGF) and Droplet Condensation Reflux Period (DCRP) decreased, leading to a reduction in thermal resistance. Conversely, an increase in the cooling flow rate resulted in opposite trends in BGF and DCRP within the tube, while both the Reynolds (Re) number and thermal resistance decreased. As such, an empirical correlation between thermal resistance and Re number was derived, demonstrating a nonlinear relationship between thermal resistance, BGF, and DCRP. These findings provide important insights for the design of heat pipes, with the potential to enhance the efficiency and reliability of solar collectors. Full article
(This article belongs to the Special Issue Advanced Energy Storage Technologies)
Show Figures

Figure 1

Review

Jump to: Research

38 pages, 10941 KiB  
Review
Recent Advances in Numerical Modeling of Aqueous Redox Flow Batteries
by Yongfu Liu and Yi He
Energies 2025, 18(15), 4170; https://doi.org/10.3390/en18154170 - 6 Aug 2025
Viewed by 456
Abstract
Aqueous redox flow batteries (ARFBs) have attracted significant attention in the field of electrochemical energy storage due to their high intrinsic safety, low cost, and flexible system configuration. However, the advancement of this technology is still hindered by several critical challenges, including capacity [...] Read more.
Aqueous redox flow batteries (ARFBs) have attracted significant attention in the field of electrochemical energy storage due to their high intrinsic safety, low cost, and flexible system configuration. However, the advancement of this technology is still hindered by several critical challenges, including capacity decay, structural optimization, and the design and application of key materials as well as their performance within battery systems. Addressing these issues requires systematic theoretical foundations and scientific guidance. Numerical modeling has emerged as a powerful tool for investigating the complex physical and electrochemical processes within flow batteries across multiple spatial and temporal scales. It also enables predictive performance analysis and cost-effective optimization at both the component and system levels, thus accelerating research and development. This review provides a comprehensive overview of recent progress in the modeling of ARFBs. Taking the all-vanadium redox flow battery as a representative example, we summarize the key multiphysics phenomena involved and introduce corresponding multi-scale modeling strategies. Furthermore, specific modeling considerations are discussed for phase-change ARFBs, such as zinc-based ones involving solid–liquid phase transition, and hydrogen–bromine systems characterized by gas–liquid two-phase flow, highlighting their distinctive features compared to vanadium systems. Finally, this paper explores the major challenges and potential opportunities in the modeling of representative ARFB systems, aiming to provide theoretical guidance and technical support for the continued development and practical application of ARFB technology. Full article
(This article belongs to the Special Issue Advanced Energy Storage Technologies)
Show Figures

Graphical abstract

Back to TopTop