energies-logo

Journal Browser

Journal Browser

The Sustainability of Energy Production from Biomass and Biofuel Technologies

A special issue of Energies (ISSN 1996-1073). This special issue belongs to the section "A4: Bio-Energy".

Deadline for manuscript submissions: 10 October 2025 | Viewed by 1269

Special Issue Editor


E-Mail Website
Guest Editor
Department of Microbiology, College of Bio-Convergence, Dankook University, Cheonan 31116, Republic of Korea
Interests: biological CO2 conversion; microorganisms; valuable substances; bioreactor, photocatalysis; large-scale cultivation

Special Issue Information

Dear Colleagues,

As global challenges related to climate change and environmental sustainability intensify, the need for innovative and efficient biological solutions has never been more urgent. The field of biological CO2 conversion, combined with advances in the cultivation of microorganisms and bioreactor technologies, offers promising pathways to reduce greenhouse gas emissions and generate valuable substances for diverse industrial applications. Recent breakthroughs in large-scale cultivation, photocatalysis, and bioprocess optimization have created new opportunities for scaling up sustainable production systems, thus playing a crucial role in transforming waste into wealth. This Special Issue will present and disseminate the latest research and technological advancements in biological CO2 conversion, sustainable bioprocesses, and the production of high-value substances through biotechnology. We invite researchers to submit contributions that explore new approaches and innovative techniques across a range of applications, ranging from environmental management to the development of bio-based products. Topics of interest include, but are not limited to, biological CO2 conversion processes and technologies; microorganisms in biotechnology and environmental applications; the production of valuable substances through biological and chemical processes; bioreactor design, optimization, and scale-up for industrial use; photocatalysis in environmental and industrial applications; advances in the large-scale cultivation of microorganisms; sustainable bioprocesses for the generation of high-value products; the integration of bioreactors with renewable energy systems; and novel biotechnological applications for circular economy models. This Special Issue will provide a comprehensive platform for sharing innovative research that addresses critical environmental issues while contributing to the development of sustainable, bio-based industrial solutions.

Dr. Byung Sun Yu
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Energies is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2600 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • biological CO2 conversion
  • microorganisms
  • sustainable bioprocesses
  • valuable substances
  • bioreactor technology

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • Reprint: MDPI Books provides the opportunity to republish successful Special Issues in book format, both online and in print.

Further information on MDPI's Special Issue policies can be found here.

Published Papers (2 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

Jump to: Review

18 pages, 2562 KB  
Article
Analysis of Mechanical Durability, Hydrophobicity, Pyrolysis and Combustion Properties of Solid Biofuel Pellets Made from Mildly Torrefied Biomass
by Kanageswari Singara veloo, Anthony Lau and Shahab Sokhansanj
Energies 2025, 18(13), 3464; https://doi.org/10.3390/en18133464 - 1 Jul 2025
Cited by 2 | Viewed by 467
Abstract
The production of solid biofuels from torrefied biomass holds significant potential for renewable energy applications. Durable pellet formation from severely torrefied biomass is hindered by the loss of natural binding properties, yet studies on mild torrefaction that preserves sufficient binding capacity for pellet [...] Read more.
The production of solid biofuels from torrefied biomass holds significant potential for renewable energy applications. Durable pellet formation from severely torrefied biomass is hindered by the loss of natural binding properties, yet studies on mild torrefaction that preserves sufficient binding capacity for pellet production without external binders or changes to die conditions remain scarce. This paper investigated the production of fuel pellets from torrefied biomass without using external binders or adjusting pelletization parameters. Experiments were conducted using a mild torrefaction temperature (230 °C and 250 °C) and shorter residence time (10, 15, and 30 min). The torrefied materials were then subjected to pelletization using a single-pellet press; and the influence of torrefaction on the mechanical durability, hydrophobicity, and fuel characteristics of the pellets was examined. Results indicated that the mass loss ranging from 10 to 20% among the mild torrefaction treatments was less than the typical extent of mass loss due to severe torrefaction. Pellets made from torrefied biomass (torrefied pellets) had improvement in the hydrophobicity (moisture resistance) when compared to pellets made from untreated biomass (untreated pellets). Improved hydrophobicity is important for storage and transportation of pellets that are exposed to humid environmental conditions, as it reduces the risk of pellet degradation and spoilage. Thermogravimetric analysis of the pyrolysis and combustion behaviour of torrefied pellets indicated the improvement of fuel characteristics in terms of a much higher comprehensive pyrolysis index and greater thermal stability compared to untreated pellets, as evidenced by the prolonged burnout time and reduced combustion characteristics index. Residence time had a more significant impact on pellet durability than temperature, but the durability of the torrefied pellets was lower than that of the untreated pellets. Further research is required to explore the feasibility of producing binder-free durable pellets under mild torrefaction conditions. Overall, the study demonstrated that mild torrefaction could enhance the fuel quality and moisture resistance of biomass pellets, offering promising advantages for energy applications, despite some trade-offs in mechanical durability. Full article
Show Figures

Figure 1

Review

Jump to: Research

30 pages, 7051 KB  
Review
Review of Material-Handling Challenges in Energy Production from Biomass and Other Solid Waste Materials
by Tong Deng, Vivek Garg and Michael S. A. Bradley
Energies 2025, 18(15), 4194; https://doi.org/10.3390/en18154194 - 7 Aug 2025
Viewed by 491
Abstract
Biomass and other solid wastes create potential environmental and health hazards in our modern society. Conversion of the wastes into energy presents a promising avenue for sustainable energy generation. However, the feasibility of the approach is limited by the challenges in material handling [...] Read more.
Biomass and other solid wastes create potential environmental and health hazards in our modern society. Conversion of the wastes into energy presents a promising avenue for sustainable energy generation. However, the feasibility of the approach is limited by the challenges in material handling because of the special properties of the materials. Despite their critical importance, the complexities of material handling often evade scrutiny until operational implementation. This paper highlights the challenges inherent in standard solid material-handling processes, preceded by a concise review of common solid waste typologies and their physical properties, particularly those related to biomass and biowastes. It delves into the complexities of material flow, storage, compaction, agglomeration, separation, transport, and hazard management. Specialised characterisation techniques essential for informed process design are also discussed to mitigate operational risks. In conclusion, this paper emphasises the necessity of a tailored framework before the establishment of any further conversion processes. Given the heterogeneous nature of biomaterials, material-handling equipment must demonstrate adaptability to accommodate the substantial variability in material properties in large-scale production. This approach aims to enhance feasibility and efficacy of any energy conversion initiatives by using biomass or other solid wastes, thereby advancing sustainable resource utilisation and environmental stewardship. Full article
Show Figures

Figure 1

Back to TopTop