Research Progress and Application of Super-hydrophobic Anti-icing Surface

A special issue of Coatings (ISSN 2079-6412). This special issue belongs to the section "Liquid–Fluid Coatings, Surfaces and Interfaces".

Deadline for manuscript submissions: 15 February 2026 | Viewed by 7240

Special Issue Editors


E-Mail Website
Guest Editor
1. College of Civil Aviation Safety Engineering, Civil Aviation Flight University of China, Guanghan, China
2. Key Laboratory of Icing and Anti/De-Icing, China Aerodynamics Research and Development Center, Mianyang, China
Interests: aviation safety; nanostructured materials; freezing and anti-icing; new energy aircraft; composite materials
Special Issues, Collections and Topics in MDPI journals

E-Mail Website
Guest Editor
College of Mechanical Engineering, Xi’an University of Science & Technology, Xi’an, China
Interests: behavior and regulation of coating surface interface; surface engineering; metal corrosion and protection
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

Icing is a normal natural phenomenon. However, unnecessary surface icing will lead to serious accidents and disasters. Based on the great harm caused by the icing problem, relevant scholars have carried out a lot of research and devoted themselves to protection against icing, but it is still a challenge to develop an efficient, energy-saving, environmentally friendly, stable and durable anti-icing surface. In view of the special wetting phenomenon in nature, we are inspired to design a new anti-icing surface to provide a new solution for this field in an energy-saving, environmentally friendly, sustainable and more efficient way.

The main goal of this Special Issue is to stimulate innovation by exploring the combination of superhydrophobic surfaces and aviation safety. We seek new contributions to demonstrate the feasibility of superhydrophobic anti-icing surfaces by integrating materials science, physics and mechanical engineering into aviation anti-icing technology in areas including, but not limited to, the following: surface icing conditions and hazards, efficient ice accumulation protection strategies, superhydrophobic design and development, research on superhydrophobic anti-icing performance, failure mechanism and improvement measures of superhydrophobic anti-icing surfaces.

This Special Issue aims to collect high-quality research papers on the application of superhydrophobic surfaces in the field of anti-icing. We sincerely invite you to contribute to this Special Issue.

Prof. Dr. Qiang He
Prof. Dr. Xuewu Li
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Coatings is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2600 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • icing
  • anti-deicing
  • superhydrophobic surface
  • aviation safety
  • energy conservation

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • e-Book format: Special Issues with more than 10 articles can be published as dedicated e-books, ensuring wide and rapid dissemination.

Further information on MDPI's Special Issue policies can be found here.

Published Papers (4 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

12 pages, 9204 KiB  
Article
Efficient and Controllable Preparation of Super-Hydrophobic Alumina-Based Ceramics Coating on Aviation Al-Li Alloy Surface for Corrosion Resistance and Anti-Icing Behavior
by Ben Li and Xuewu Li
Coatings 2024, 14(9), 1223; https://doi.org/10.3390/coatings14091223 - 22 Sep 2024
Viewed by 1465
Abstract
Al-Li alloys have been widely applied in aircraft structural component and shell material. However, Al-Li alloys are prone to corrosion failure, which leads to a considerable safety risk in the aerospace field and greatly limits their industrial application. Herein, a simple, low-cost, and [...] Read more.
Al-Li alloys have been widely applied in aircraft structural component and shell material. However, Al-Li alloys are prone to corrosion failure, which leads to a considerable safety risk in the aerospace field and greatly limits their industrial application. Herein, a simple, low-cost, and large-scale air-spraying technique is developed for the preparation of an alumina-based ceramics coating with enhanced corrosion resistance and anti-icing behavior. The results show that the static contact angle of the as-prepared coating is 157.2 ± 0.4°, and the rolling angle is only 9.8°, suggesting a super-hydrophobic surface. Meanwhile, the electrochemical corrosion potential of the coating is 70 mV higher than that of the substrate, and the corrosion current density of the coating also decreases by 1 order of magnitude, indicating a significantly improved corrosion resistance. In addition, the fabricated super-hydrophobic coating also shows excellent anti-pollution and anti-icing characteristics. This work provides positive guidance for expanding the application of hydrophobic coating in the aerospace industry, especially in some complex corrosion, icing, and pollution environments. Full article
Show Figures

Figure 1

14 pages, 9812 KiB  
Article
One-Step Fabrication of Composite Hydrophobic Electrically Heated Graphene Surface
by Mian Zhong, Shichen Li, Hongyun Fan, Huazhong Zhang, Yong Jiang, Jinling Luo and Liang Yang
Coatings 2024, 14(8), 1052; https://doi.org/10.3390/coatings14081052 - 17 Aug 2024
Viewed by 1286
Abstract
Ice accumulation poses considerable challenges in transportation, notably in the domain of general aviation. The present study combines the strengths and limitations of conventional aircraft deicing techniques with the emerging trend toward all-electric aircraft. This study aims to utilize laser-induced graphene (LIG) technology [...] Read more.
Ice accumulation poses considerable challenges in transportation, notably in the domain of general aviation. The present study combines the strengths and limitations of conventional aircraft deicing techniques with the emerging trend toward all-electric aircraft. This study aims to utilize laser-induced graphene (LIG) technology to create a multifunctional surface, seamlessly integrating hydrophobic properties with efficient electrical heating to mitigate surface icing effectively. We investigated the utilization of a 10.6 μm CO2 laser for direct writing on polyimide (PI), a widely used insulating encapsulation material. From the thermomechanical perspective, our initial analysis using COMSOL Multiphysics software (V5.6) revealed that when the laser power P exceeds 5 W, the PI substrate experiences ablative damage. The experimental results show that when P ≤ 5 W, an increase in power has a positive impact on the quality, surface porosity, roughness reduction, line-spacing reduction, and water contact-angle enhancement of the graphene. Conversely, when P > 5 W, higher power negatively affects both the substrate and the graphene structure by inducing excessive ablation. However, it influences the graphene line height positively and is consistent with overall experimental–simulation congruence. Furthermore, the incorporation of high-quality graphene resulted in a surface that exhibited higher contact angles (CA > 120°), lower energy consumption, and higher heating efficiency compared to the use of traditional electrically heated materials for anti-icing applications. The potential applications of this one-step fabrication method extend across various industries, particularly aviation, marine engineering, and other ice-prone domains. Moreover, the method has extensive prospects for addressing pivotal challenges associated with ice formation and serves as an innovative and efficient anti-icing technology. Full article
Show Figures

Figure 1

28 pages, 11580 KiB  
Article
Durable and High-Temperature-Resistant Superhydrophobic Diatomite Coatings for Cooling Applications
by José Pereira, Reinaldo Souza, António Moreira and Ana Moita
Coatings 2024, 14(7), 805; https://doi.org/10.3390/coatings14070805 - 28 Jun 2024
Cited by 1 | Viewed by 2065
Abstract
The present work is aimed at the development of superhydrophobic coatings and surfaces with enhanced robustness and boiling temperature resistance. We will address the synthesis method of the coatings, which was based on the preparation of a composite of silanized diatomite particles embedded [...] Read more.
The present work is aimed at the development of superhydrophobic coatings and surfaces with enhanced robustness and boiling temperature resistance. We will address the synthesis method of the coatings, which was based on the preparation of a composite of silanized diatomite particles embedded in epoxy resin. After the synthesis of the composite solution, it was applied by dip-coating in stainless steel substrates and submitted to a post-treatment cure in an oven. The method proved to be a comparatively fast and simple one. Then, the substrate/coating sets were characterized using different techniques, including Fourier transform infrared spectroscopy and scanning electron microscopy, and their water contact angle and roughness were measured. Apart from this, the physical and chemical robustness of the sets was also tested using diverse resistance tests like adhesion strength, abrasion resistance, resistance to strong acids and bases, and resistance to boiling water. The main results are that we obtained robust coatings, with wettability defined by water contact angles above 150°. Also, the synthesized coatings revealed good resistance to boiling water, as their properties were almost unchanged after the completion of a long period of tests. The characterization of the produced coatings suggested their propensity to be explored for use in water boiling surfaces and interfaces for cooling purposes in boiling heat transfer systems. Full article
Show Figures

Figure 1

17 pages, 9379 KiB  
Article
Feasibility Study on Biodegradable Black Paper-Based Film Solidified Using Cooked Tung Oil
by Yi Wu, Yicheng Shi, Yudie Zhao and Yu Yin
Coatings 2024, 14(3), 284; https://doi.org/10.3390/coatings14030284 - 26 Feb 2024
Cited by 2 | Viewed by 1464
Abstract
New biodegradable paper-based films are a hot research topic in the development of green agriculture. In this study, a black paper-based film coated with cooked tung oil with excellent mechanical properties, a hydrophobic surface, high heat transfer and strong weather resistance was prepared [...] Read more.
New biodegradable paper-based films are a hot research topic in the development of green agriculture. In this study, a black paper-based film coated with cooked tung oil with excellent mechanical properties, a hydrophobic surface, high heat transfer and strong weather resistance was prepared by spraying high-pigment carbon black solution on the surface of base paper. The results showed that the surface-solidified oil film had a rough structure produced via the brush coating process using cooked tung oil. The base film of the black paper had a given hydrophobic structure, and the contact angle reached 98.9°. Cooked tung oil permeates into the inside of the paper base, and after curing, it forms a multi-dimensional network film structure. The maximum tensile stress of the black paper base film is about 123% higher than that of the original paper base film. The coloring of carbon black gives the black paper base film a heat conduction effect, and the average heat transfer rate reaches 15.12 °C/s. Cooked tung oil is combined with the paper-based fiber high-toughness layer to form a stable system. The existence of a cured film improves the basic mechanics and hydrophobicity, and the resistance to ultraviolet radiation and hot air is greatly improved. This study provides a feasible scheme for the application of a black paper base film coated with cooked tung oil. Full article
Show Figures

Figure 1

Back to TopTop