Special Issue "Biocatalysts: Design and Application"

A special issue of Catalysts (ISSN 2073-4344). This special issue belongs to the section "Catalytic Materials".

Deadline for manuscript submissions: 31 January 2019

Special Issue Editors

Guest Editor
Prof. Dr. Cesar Mateo

Group of Chemical Processes Catalyzed by enzymes, Departament of Biocatalysis, Institute of Catalysis (ICP-CSIC), Marie Curie 2, Cantoblanco, Campus UAM, 28049 Madrid, Spain
Website | E-Mail
Interests: enzyme processes; biocatalysis; CO2 transformation; red-ox processes; enzyme immobilization
Guest Editor
Prof. Jose M. Palomo

Group of Chemical Biology and Biocatalysis,Departament of Biocatalysis, Institute of Catalysis (ICP-CSIC), Marie Curie 2, Cantoblanco, Campus UAM, 28049 Madrid, Spain
Website | E-Mail
Interests: Nanocatalysis, Nanobiotechnology, Nanoparticles, Glycochemistry, Protein Chemistry

Special Issue Information

Dear Colleagues,

The use of biocatalysts in chemical reactions are of great interest because they are carried out under very mild and environmentally green conditions. The preparation of robust and efficient biocatalysts is a key issue for their possible implementation into large-scale processes.

This special issue is focused on different papers dealing with the development of new strategies to improve different biocatalysts, their application in processes of industrial interest as well as new kind of applications of these catalysts in different fields.

Prof. Dr. Cesar Mateo
Prof. Dr. Jose M. Palomo
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All papers will be peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Catalysts is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 1300 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • protein chemistry
  • molecular biology
  • immobilization
  • biocatalysis
  • biotransformations
  • carbohydrate chemistry
  • cascade reaction
  • nanocatalysis

Published Papers (5 papers)

View options order results:
result details:
Displaying articles 1-5
Export citation of selected articles as:

Research

Open AccessArticle Highly Efficient Synthesis of 2,5-Dihydroxypyridine using Pseudomonas sp. ZZ-5 Nicotine Hydroxylase Immobilized on Immobead 150
Catalysts 2018, 8(11), 548; https://doi.org/10.3390/catal8110548
Received: 30 September 2018 / Revised: 7 November 2018 / Accepted: 13 November 2018 / Published: 16 November 2018
PDF Full-text (3712 KB) | HTML Full-text | XML Full-text
Abstract
In this report, the use of immobilized nicotine hydroxylase from Pseudomonas sp. ZZ-5 (HSPHZZ) for the production of 2,5-dihydroxypyridine (2,5-DHP) from 6-hydroxy-3-succinoylpyridine (HSP) in the presence of nicotinamide adenine dinucleotide (NADH) and flavin adenine dinucleotide (FAD) is described. HSPHZZ was
[...] Read more.
In this report, the use of immobilized nicotine hydroxylase from Pseudomonas sp. ZZ-5 (HSPHZZ) for the production of 2,5-dihydroxypyridine (2,5-DHP) from 6-hydroxy-3-succinoylpyridine (HSP) in the presence of nicotinamide adenine dinucleotide (NADH) and flavin adenine dinucleotide (FAD) is described. HSPHZZ was covalently immobilized on Immobead 150 (ImmHSPHZZ). ImmHSPHZZ (obtained with 5–30 mg of protein per gram of support) catalyzed the hydrolysis of HSP to 2,5-DHP. At a protein loading of 15 mg g−1, ImmHSPHZZ converted 93.6% of HSP to 2,5-DHP in 6 h. The activity of ImmHSPHZZ was compared with that of free HSPHZZ under various conditions, including pH, temperature, enzyme concentration, substrate concentration and stability over time, and kinetic parameters were measured. The results showed that ImmHSPHZZ performed better over wider ranges of pH and temperature when compared with that of HSPHZZ. The optimal concentrations of ImmHSPHZZ and substrate were 30 mg L−1 and 0.75 mM, respectively. Under optimal conditions, 94.5 mg L−1 of 2,5-DHP was produced after 30 min with 85.4% conversion. After 8 reaction cycles and 6 days of storage, 51.3% and 75.0% of the initial enzyme activity remained, respectively. The results provide a framework for development of commercially suitable immobilized enzymes that produce 2,5-DHP. Full article
(This article belongs to the Special Issue Biocatalysts: Design and Application)
Figures

Graphical abstract

Open AccessArticle Production of Thermostable T1 Lipase Using Agroindustrial Waste Medium Formulation
Catalysts 2018, 8(11), 485; https://doi.org/10.3390/catal8110485
Received: 19 September 2018 / Revised: 10 October 2018 / Accepted: 15 October 2018 / Published: 23 October 2018
PDF Full-text (1002 KB) | HTML Full-text | XML Full-text
Abstract
Large-scale production of T1 lipase using conventional culture media is costly. To reduce the cost of production, an alternative growth medium using local resources has been developed. In this study, the growth of recombinant Escherichia coli and expression of T1 lipase were tested
[...] Read more.
Large-scale production of T1 lipase using conventional culture media is costly. To reduce the cost of production, an alternative growth medium using local resources has been developed. In this study, the growth of recombinant Escherichia coli and expression of T1 lipase were tested using different agroindustrial wastes as carbon and nitrogen sources by conventional method. Subsequently, by using central composite rotatable design (CCRD), a set of 30 experiments was generated to evaluate the effect of different parameters, including the amount of molasses (as carbon source), fish waste (as nitrogen source), NaCl, and inducer concentration on production of T1 lipase. Response surface methodology (RSM) analysis indicated that all factors had significant effects on T1 lipase production. This statistical analysis was utilised to develop a quadratic model to correlate various important variables for the growth of the recombinant strain and regulation of gene expression to the response (T1 lipase activity). Optimum conditions for T1 lipase production were observed to be 1.0 g/L of molasses, 2.29 g/L of fish waste, 3.46 g/L of NaCl, and 0.03 mM of IPTG (Isopropyl β-d-1-thiogalactopyranoside). Based on these conditions, the actual lipase activity was found to be 164.37 U/mL, which fitted well with the maximum predicted value of 172.89 U/mL. Therefore, the results demonstrated that, the statistical analysis, performed using RSM, was efficient in optimising T1 lipase production. Moreover, the optimum conditions obtained can be applied to scale up the process and minimise the cost of enzyme production. Full article
(This article belongs to the Special Issue Biocatalysts: Design and Application)
Figures

Figure 1

Open AccessCommunication Application of Lecitase® Ultra-Catalyzed Hydrolysis to the Kinetic Resolution of (E)-4-phenylbut-3-en-2-yl Esters
Catalysts 2018, 8(10), 423; https://doi.org/10.3390/catal8100423
Received: 17 September 2018 / Revised: 25 September 2018 / Accepted: 27 September 2018 / Published: 28 September 2018
PDF Full-text (953 KB) | HTML Full-text | XML Full-text
Abstract
The possibility of using Lecitase® Ultra as a novel alternative biocatalyst for the kinetic resolution of model racemic allyl esters of (E)-4-phenylbut-3-en-3-ol: Acetate (4a) and propionate (4b) through their enantioselective hydrolysis was investigated. Reaction afforded (+)-(
[...] Read more.
The possibility of using Lecitase® Ultra as a novel alternative biocatalyst for the kinetic resolution of model racemic allyl esters of (E)-4-phenylbut-3-en-3-ol: Acetate (4a) and propionate (4b) through their enantioselective hydrolysis was investigated. Reaction afforded (+)-(R)-alcohol (3) and unreacted (−)-(S)-ester (4a or 4b). Hydrolysis of propionate 4b proceeded with higher enantioselectivity than acetate 4a. (R)-Alcohol (3) with highest enantiomeric excess (93–99%) was obtained at 20–30 °C by hydrolysis of propionate 4b, while the highest optical purity of unreacted substrate was observed for (S)-acetate 4a (ee = 34–56%). The highest enantioselectivity was found for the hydrolysis of propionate 4b catalyzed at 30 °C (E = 38). Reaction carried out at 40 °C significantly lowered enantiomeric excess of produced alcohol 3 and enantioselectivity in resolution. Lecitase® Ultra catalyzed the enantioselective hydrolysis of allyl esters 4a,b according to Kazlauskas’ rule to produce (R)-alcohol 3 and can find application as a novel biocatalyst in the processes of kinetic resolution of racemic allyl esters. Full article
(This article belongs to the Special Issue Biocatalysts: Design and Application)
Figures

Graphical abstract

Open AccessArticle Study of Extraction and Enzymatic Properties of Cell-Envelope Proteinases from a Novel Wild Lactobacillus plantarum LP69
Catalysts 2018, 8(8), 325; https://doi.org/10.3390/catal8080325
Received: 17 July 2018 / Revised: 5 August 2018 / Accepted: 7 August 2018 / Published: 8 August 2018
PDF Full-text (5279 KB) | HTML Full-text | XML Full-text
Abstract
Lactobacilli cell-envelope proteinases (CEPs) have been widely used in the development of new streams of blockbuster nutraceuticals because of numerous biopharmaceutical potentials; thus, the development of viable methods for CEP extraction and the improvement of extraction efficiency will promote their full-scale application. In
[...] Read more.
Lactobacilli cell-envelope proteinases (CEPs) have been widely used in the development of new streams of blockbuster nutraceuticals because of numerous biopharmaceutical potentials; thus, the development of viable methods for CEP extraction and the improvement of extraction efficiency will promote their full-scale application. In this study, CEP from a novel wild Lactobacillus plantarum LP69 was released from cells by incubating in calcium-free buffer. The extraction conditions of CEP were optimized by response surface methodology with the enzyme activity and specific activity as the detective marker. The optimal extraction conditions were: time of 80 min, temperature of 39 °C and buffer pH of 6.5. Under these conditions, enzyme activity and specific activity were (23.94 ± 0.86) U/mL and (1.37 ± 0.03) U/mg, respectively, which were well matched with the predicted values (22.12 U/mL and 1.36 U/mg). Optimal activity of the crude CEP occurred at pH 8.0 and 40 °C. It is a metallopeptidase, activated by Ca2+, inhibited by Zn2+ and ethylene-diamine-tetra-acetic acid, and a serine proteinase which is inhibited by phenylmethylsulfonyl fluoride. Kinetic studies showed that CEP from LP69 could hydrolyze whey protein, lactoglobulin and casein. Our study improves the extraction efficiency of CEPs from LP69, providing the reference for their industrial development. Full article
(This article belongs to the Special Issue Biocatalysts: Design and Application)
Figures

Figure 1

Open AccessArticle Electrochemical Biosensor for the Determination of Amlodipine Besylate Based on Gelatin–Polyaniline Iron Oxide Biocomposite Film
Catalysts 2018, 8(6), 233; https://doi.org/10.3390/catal8060233
Received: 19 April 2018 / Revised: 10 May 2018 / Accepted: 18 May 2018 / Published: 4 June 2018
PDF Full-text (5960 KB) | HTML Full-text | XML Full-text
Abstract
In the present study, a new biosensor based on lipase from Candida rugosa (CRL) was developed for amlodipine besylate drug (AMD) with biodegradable material using a mixture of polyaniline iron oxide and gelatin. Polyaniline/Fe2O3 (PANI@Fe2O3) was
[...] Read more.
In the present study, a new biosensor based on lipase from Candida rugosa (CRL) was developed for amlodipine besylate drug (AMD) with biodegradable material using a mixture of polyaniline iron oxide and gelatin. Polyaniline/Fe2O3 (PANI@Fe2O3) was prepared by a chemical polymerization method in a medium of ammonium persulfate as an oxidant and characterized by employing Scanning Electron Microscopy (SEM), Fourier Transform Infrared (FTIR), and Ultra-violet (UV) spectroscopy. The purified enzyme was entrapped in the biocomposite matrix film with the aid of a glutaraldehyde cross-linking reagent to establish the immobilization of the lipase. The principle of the biosensor is based on the electrochemical properties of amlodipine besylate (AMD), which were studied for the first time using the cyclic voltammetric method. The cathodic behavior of AMD was measured on the irreversible reduction signal at −0.185 V versus Ag/AgCl at pH 7.4 and 30 °C in a phosphate alkaline buffer. Full article
(This article belongs to the Special Issue Biocatalysts: Design and Application)
Figures

Figure 1

Back to Top