Topical Collection "Drug Resistance and Novel Therapies in Cancers"

A topical collection in Cancers (ISSN 2072-6694). This collection belongs to the section "Cancer Therapy".

Editor

Prof. Dr. Zhixiang Wang
E-Mail Website
Collection Editor
Signal Transduction Research Group, Department of Medical Genetics, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G 2H7, Canada
Interests: EGFR family receptors; receptor tyrosine kinases; cell signaling; receptor endocytosis and trafficking; cell cycle; Rho family of GTPases; breast cancer; drug resistance
Special Issues and Collections in MDPI journals

Topical Collection Information

Dear Colleagues,

Cancer is among the leading causes of mortality in developed countries. Despite advances in treatment in all settings, disease recurrence and progression remains a major obstacle to therapy. One of the main clinical issues is the development of drug resistance. Drug resistance exists in two forms: Acquired resistance, where the drug is initially efficient but becomes ineffective over time, while intrinsic resistance occurs when a drug is ineffective from the beginning of treatment. The hallmarks of drug resistance in cancers include sustained tumor cell proliferation, insensitive to growth suppressors, resisting cell death, and active invasion.

The early drugs used in cancer treatment are all of chemical origin, and as thus, drug resistance is also called chemoresistance in cancer. However, with the development of novel cancer treatment agents, such as hormones, cytokines, antibodies, antisense oligonucleotides and siRNAs, cancer drugs now could include any agent that is used to treat cancer patients. Therefore the term drug resistance in cancer could be used to cover resistance to any cancer treatment agents.

Through intensive studies, multiple mechanisms have been identified for the development of drug resistance. In general, drug resistance could arise due to decreased intracellular drug concentrations, alterations of drug targets, epigenetic modification, and activation of certain signaling cascades These mechanisms include drug inactivation, drug target alteration, drug efflux, DNA damage repair, cell death inhibition, the epithelial-mesenchymal transition (EMT), and epigenetic modifications.

Many strategies have been developed to combat drug resistance, either by combining the currently available therapies or by developing novel therapies. While new chemotherapeutic agents are still developed and chemotherapy is still standard-of-care in the treatment of most cancers, the focus has shift to the development and application of novel therapeutic agents for immunotherapy and targeted therapy due to the improved understanding of tumor biology and the hallmarks of cancers. Targeted therapies have frequently been used in combination with chemotherapeutic agents and radiotherapy in some cases.

Prof. Dr. Zhixiang Wang
Collection Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All papers will be peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the collection website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Cancers is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2200 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • cancer
  • chemotherapy
  • novel therapy
  • drug resistance
  • multidrug resistance
  • intrinsic drug resistance
  • acquired drug resistance
  • metastasis
  • apoptosis
  • disease recurrence
  • targeted therapy
  • immunotherapy
  • hormones
  • cytokines
  • antibodies
  • antisense oligonucleotides
  • siRNAs

Published Papers (72 papers)

2021

Jump to: 2020, 2019, 2018

Open AccessArticle
KEAP1 Is Required for Artesunate Anticancer Activity in Non-Small-Cell Lung Cancer
Cancers 2021, 13(8), 1885; https://doi.org/10.3390/cancers13081885 - 14 Apr 2021
Viewed by 320
Abstract
Artesunate is the most common treatment for malaria throughout the world. Artesunate has anticancer activity likely through the induction of reactive oxygen species, the same mechanism of action utilized in Plasmodium falciparum infections. Components of the kelch-like ECH-associated protein 1 (KEAP1)/nuclear factor erythroid [...] Read more.
Artesunate is the most common treatment for malaria throughout the world. Artesunate has anticancer activity likely through the induction of reactive oxygen species, the same mechanism of action utilized in Plasmodium falciparum infections. Components of the kelch-like ECH-associated protein 1 (KEAP1)/nuclear factor erythroid 2-related factor 2 (NRF2) pathway, which regulates cellular response to oxidative stress, are mutated in approximately 30% of non-small-cell lung cancers (NSCLC); therefore, we tested the hypothesis that KEAP1 is required for artesunate sensitivity in NSCLC. Dose response assays identified A549 cells, which have a G333C-inactivating mutation in KEAP1, as resistant to artesunate, with an IC50 of 23.6 µM, while H1299 and H1563 cells were sensitive to artesunate, with a 10-fold lower IC50. Knockdown of KEAP1 through siRNA caused increased resistance to artesunate in H1299 cells. Alternatively, the pharmacological inhibition of NRF2, which is activated downstream of KEAP1 loss, by ML385 partially restored sensitivity of A549 cells to artesunate, and the combination of artesunate and ML385 was synergistic in both A549 and H1299 cells. These findings demonstrate that KEAP1 is required for the anticancer activity of artesunate and support the further development of NRF2 inhibitors to target patients with mutations in the KEAP1/NRF2 pathway. Full article
Show Figures

Figure 1

Open AccessArticle
FEN1 Blockade for Platinum Chemo-Sensitization and Synthetic Lethality in Epithelial Ovarian Cancers
Cancers 2021, 13(8), 1866; https://doi.org/10.3390/cancers13081866 - 14 Apr 2021
Viewed by 372
Abstract
FEN1 plays critical roles in long patch base excision repair (LP-BER), Okazaki fragment maturation, and rescue of stalled replication forks. In a clinical cohort, FEN1 overexpression is associated with aggressive phenotype and poor progression-free survival after platinum chemotherapy. Pre-clinically, FEN1 is induced upon [...] Read more.
FEN1 plays critical roles in long patch base excision repair (LP-BER), Okazaki fragment maturation, and rescue of stalled replication forks. In a clinical cohort, FEN1 overexpression is associated with aggressive phenotype and poor progression-free survival after platinum chemotherapy. Pre-clinically, FEN1 is induced upon cisplatin treatment, and nuclear translocation of FEN1 is dependent on physical interaction with importin β. FEN1 depletion, gene inactivation, or inhibition re-sensitizes platinum-resistant ovarian cancer cells to cisplatin. BRCA2 deficient cells exhibited synthetic lethality upon treatment with a FEN1 inhibitor. FEN1 inhibitor-resistant PEO1R cells were generated, and these reactivated BRCA2 and overexpressed the key repair proteins, POLβ and XRCC1. FEN1i treatment was selectively toxic to POLβ deficient but not XRCC1 deficient ovarian cancer cells. High throughput screening of 391,275 compounds identified several FEN1 inhibitor hits that are suitable for further drug development. We conclude that FEN1 is a valid target for ovarian cancer therapy. Full article
Show Figures

Graphical abstract

Open AccessArticle
Sensitivity and Resistance of Oncogenic RAS-Driven Tumors to Dual MEK and ERK Inhibition
Cancers 2021, 13(8), 1852; https://doi.org/10.3390/cancers13081852 - 13 Apr 2021
Viewed by 462
Abstract
Oncogenic mutations in RAS family genes arise frequently in metastatic human cancers. Here we developed new mouse and cellular models of oncogenic HrasG12V-driven undifferentiated pleomorphic sarcoma metastasis and of KrasG12D-driven pancreatic ductal adenocarcinoma metastasis. Through analyses of these cells [...] Read more.
Oncogenic mutations in RAS family genes arise frequently in metastatic human cancers. Here we developed new mouse and cellular models of oncogenic HrasG12V-driven undifferentiated pleomorphic sarcoma metastasis and of KrasG12D-driven pancreatic ductal adenocarcinoma metastasis. Through analyses of these cells and of human oncogenic KRAS-, NRAS- and BRAF-driven cancer cell lines we identified that resistance to single MEK inhibitor and ERK inhibitor treatments arise rapidly but combination therapy completely blocks the emergence of resistance. The prior evolution of resistance to either single agent frequently leads to resistance to dual treatment. Dual MEK inhibitor plus ERK inhibitor therapy shows anti-tumor efficacy in an HrasG12V-driven autochthonous sarcoma model but features of drug resistance in vivo were also evident. Array-based kinome activity profiling revealed an absence of common patterns of signaling rewiring in single or double MEK and ERK inhibitor resistant cells, showing that the development of resistance to downstream signaling inhibition in oncogenic RAS-driven tumors represents a heterogeneous process. Nonetheless, in some single and double MEK and ERK inhibitor resistant cell lines we identified newly acquired drug sensitivities. These may represent additional therapeutic targets in oncogenic RAS-driven tumors and provide general proof-of-principle that therapeutic vulnerabilities of drug resistant cells can be identified. Full article
Show Figures

Figure 1

Open AccessEditorial
Drug Resistance and Novel Therapies in Cancers in 2019
Cancers 2021, 13(4), 924; https://doi.org/10.3390/cancers13040924 - 23 Feb 2021
Viewed by 413
Abstract
After the successful launch in the second half of 2018 by Cancers, the topic collection “Drug Resistance and Novel Therapies in Cancers” experienced its productive first full year in 2019 [...] Full article
Open AccessArticle
Facilitating Drug Discovery in Breast Cancer by Virtually Screening Patients Using In Vitro Drug Response Modeling
Cancers 2021, 13(4), 885; https://doi.org/10.3390/cancers13040885 - 20 Feb 2021
Viewed by 475
Abstract
(1) Background: Drug imputation methods often aim to translate in vitro drug response to in vivo drug efficacy predictions. While commonly used in retrospective analyses, our aim is to investigate the use of drug prediction methods for the generation of novel drug discovery [...] Read more.
(1) Background: Drug imputation methods often aim to translate in vitro drug response to in vivo drug efficacy predictions. While commonly used in retrospective analyses, our aim is to investigate the use of drug prediction methods for the generation of novel drug discovery hypotheses. Triple-negative breast cancer (TNBC) is a severe clinical challenge in need of new therapies. (2) Methods: We used an established machine learning approach to build models of drug response based on cell line transcriptome data, which we then applied to patient tumor data to obtain predicted sensitivity scores for hundreds of drugs in over 1000 breast cancer patients. We then examined the relationships between predicted drug response and patient clinical features. (3) Results: Our analysis recapitulated several suspected vulnerabilities in TNBC and identified a number of compounds-of-interest. AZD-1775, a Wee1 inhibitor, was predicted to have preferential activity in TNBC (p < 2.2 × 10−16) and its efficacy was highly associated with TP53 mutations (p = 1.2 × 10−46). We validated these findings using independent cell line screening data and pathway analysis. Additionally, co-administration of AZD-1775 with standard-of-care paclitaxel was able to inhibit tumor growth (p < 0.05) and increase survival (p < 0.01) in a xenograft mouse model of TNBC. (4) Conclusions: Overall, this study provides a framework to turn any cancer transcriptomic dataset into a dataset for drug discovery. Using this framework, one can quickly generate meaningful drug discovery hypotheses for a cancer population of interest. Full article
Show Figures

Graphical abstract

Open AccessArticle
Sulforaphane Inhibits the Expression of Long Noncoding RNA H19 and Its Target APOBEC3G and Thereby Pancreatic Cancer Progression
Cancers 2021, 13(4), 827; https://doi.org/10.3390/cancers13040827 - 16 Feb 2021
Viewed by 457
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is extremely malignant and the therapeutic options available usually have little impact on survival. Great hope is placed on new therapeutic targets, including long noncoding RNAs (lncRNAs), and on the development of new drugs, based on e.g., broccoli-derived sulforaphane, [...] Read more.
Pancreatic ductal adenocarcinoma (PDAC) is extremely malignant and the therapeutic options available usually have little impact on survival. Great hope is placed on new therapeutic targets, including long noncoding RNAs (lncRNAs), and on the development of new drugs, based on e.g., broccoli-derived sulforaphane, which meanwhile has shown promise in pilot studies in patients. We examined whether sulforaphane interferes with lncRNA signaling and analyzed five PDAC and two nonmalignant cell lines, patient tissues (n = 30), and online patient data (n = 350). RT-qPCR, Western blotting, MTT, colony formation, transwell and wound healing assays; gene array analysis; bioinformatics; in situ hybridization; immunohistochemistry and xenotransplantation were used. Sulforaphane regulated the expression of all of five examined lncRNAs, but basal expression, biological function and inhibition of H19 were of highest significance. H19 siRNA prevented colony formation, migration, invasion and Smad2 phosphorylation. We identified 103 common sulforaphane- and H19-related target genes and focused to the virus-induced tumor promoter APOBEC3G. APOBEC3G siRNA mimicked the previously observed H19 and sulforaphane effects. In vivo, sulforaphane- or H19 or APOBEC3G siRNAs led to significantly smaller tumor xenografts with reduced expression of Ki67, APOBEC3G and phospho-Smad2. Together, we identified APOBEC3G as H19 target, and both are inhibited by sulforaphane in prevention of PDAC progression. Full article
Show Figures

Figure 1

Open AccessArticle
HSP90α Mediates Sorafenib Resistance in Human Hepatocellular Carcinoma by Necroptosis Inhibition under Hypoxia
Cancers 2021, 13(2), 243; https://doi.org/10.3390/cancers13020243 - 11 Jan 2021
Viewed by 575
Abstract
As one of the most common malignancies worldwide, Hepatocellular carcinoma (HCC) has been treated by Sorafenib, which is the first approved target drug by FDA for advanced HCC. However, drug resistance is one of the obstacles to its application. As a typical characteristic [...] Read more.
As one of the most common malignancies worldwide, Hepatocellular carcinoma (HCC) has been treated by Sorafenib, which is the first approved target drug by FDA for advanced HCC. However, drug resistance is one of the obstacles to its application. As a typical characteristic of most solid tumors, hypoxia has become a key cause of resistance to chemotherapy and radiotherapy. It is important to elucidate the underlying mechanisms of Sorafenib resistance under hypoxia. In this study, the morphological changes of hepatocellular carcinoma cells were observed by Live Cell Imaging System and Transmission Electron Microscope; Sorafenib was found to induce necroptosis in liver cancer. Under hypoxia, the distribution of necroptosis related proteins was changed, which contributed to Sorafenib resistance. HSP90α binds with the necrosome complex and promotes chaperone-mediated autophagy (CMA) degradation, which leads necroptosis blocking and results in Sorafenib resistance. The patient-derived tumor xenograft (PDX) model has been established to investigate the potential therapeutic strategies to overcome Sorafenib resistance. 17-AAG inhibited HSP90α and presented obvious reversal effects of Sorafenib resistance in vivo and in vitro. All the results emphasized that HSP90α plays a critical role in Sorafenib resistance under hypoxia and 17-AAG combined with Sorafenib is a promising therapy for hepatocellular carcinoma. Full article
Show Figures

Figure 1

2020

Jump to: 2021, 2019, 2018

Open AccessArticle
Bruton’s Tyrosine Kinase Inhibitors Ibrutinib and Acalabrutinib Counteract Anthracycline Resistance in Cancer Cells Expressing AKR1C3
Cancers 2020, 12(12), 3731; https://doi.org/10.3390/cancers12123731 - 11 Dec 2020
Cited by 1 | Viewed by 447
Abstract
Over the last few years, aldo-keto reductase family 1 member C3 (AKR1C3) has been associated with the emergence of multidrug resistance (MDR), thereby hindering chemotherapy against cancer. In particular, impaired efficacy of the gold standards of induction therapy in acute myeloid leukaemia (AML) [...] Read more.
Over the last few years, aldo-keto reductase family 1 member C3 (AKR1C3) has been associated with the emergence of multidrug resistance (MDR), thereby hindering chemotherapy against cancer. In particular, impaired efficacy of the gold standards of induction therapy in acute myeloid leukaemia (AML) has been correlated with AKR1C3 expression, as this enzyme metabolises several drugs including anthracyclines. Therefore, the development of selective AKR1C3 inhibitors may help to overcome chemoresistance in clinical practice. In this regard, we demonstrated that Bruton’s tyrosine kinase (BTK) inhibitors ibrutinib and acalabrutinib efficiently prevented daunorubicin (Dau) inactivation mediated by AKR1C3 in both its recombinant form as well as during its overexpression in cancer cells. This revealed a synergistic effect of BTK inhibitors on Dau cytotoxicity in cancer cells expressing AKR1C3 both exogenously and endogenously, thus reverting anthracycline resistance in vitro. These findings suggest that BTK inhibitors have a novel off-target action, which can be exploited against leukaemia through combination regimens with standard chemotherapeutics like anthracyclines. Full article
Show Figures

Graphical abstract

Open AccessReview
Getting Lost in the Cell–Lysosomal Entrapment of Chemotherapeutics
Cancers 2020, 12(12), 3669; https://doi.org/10.3390/cancers12123669 - 07 Dec 2020
Cited by 1 | Viewed by 571
Abstract
Despite extensive research, resistance to chemotherapy still poses a major obstacle in clinical oncology. An exciting strategy to circumvent chemoresistance involves the identification and subsequent disruption of cellular processes that are aberrantly altered in oncogenic states. Upon chemotherapeutic challenges, lysosomes are deemed to [...] Read more.
Despite extensive research, resistance to chemotherapy still poses a major obstacle in clinical oncology. An exciting strategy to circumvent chemoresistance involves the identification and subsequent disruption of cellular processes that are aberrantly altered in oncogenic states. Upon chemotherapeutic challenges, lysosomes are deemed to be essential mediators that enable cellular adaptation to stress conditions. Therefore, lysosomes potentially hold the key to disarming the fundamental mechanisms of chemoresistance. This review explores modes of action of classical chemotherapeutic agents, adaptive response of the lysosomes to cell stress, and presents physiological and pharmacological insights pertaining to drug compartmentalization, sequestration, and extracellular clearance through the lens of lysosomes. Full article
Show Figures

Graphical abstract

Open AccessReview
Cannabidiol (CBD) as a Promising Anti-Cancer Drug
Cancers 2020, 12(11), 3203; https://doi.org/10.3390/cancers12113203 - 30 Oct 2020
Cited by 5 | Viewed by 4473
Abstract
Recently, cannabinoids, such as cannabidiol (CBD) and Δ9-tetrahydrocannabinol (THC), have been the subject of intensive research and heavy scrutiny. Cannabinoids encompass a wide array of organic molecules, including those that are physiologically produced in humans, synthesized in laboratories, and extracted primarily [...] Read more.
Recently, cannabinoids, such as cannabidiol (CBD) and Δ9-tetrahydrocannabinol (THC), have been the subject of intensive research and heavy scrutiny. Cannabinoids encompass a wide array of organic molecules, including those that are physiologically produced in humans, synthesized in laboratories, and extracted primarily from the Cannabis sativa plant. These organic molecules share similarities in their chemical structures as well as in their protein binding profiles. However, pronounced differences do exist in their mechanisms of action and clinical applications, which will be briefly compared and contrasted in this review. The mechanism of action of CBD and its potential applications in cancer therapy will be the major focus of this review article. Full article
Show Figures

Figure 1

Open AccessEditorial
Drug Resistance and Novel Therapies in Cancers
Cancers 2020, 12(10), 2929; https://doi.org/10.3390/cancers12102929 - 12 Oct 2020
Viewed by 417
Open AccessArticle
Time-Resolved Profiling Reveals ATF3 as a Novel Mediator of Endocrine Resistance in Breast Cancer
Cancers 2020, 12(10), 2918; https://doi.org/10.3390/cancers12102918 - 11 Oct 2020
Viewed by 828
Abstract
Breast cancer is one of the leading causes of death for women worldwide. Patients whose tumors express Estrogen Receptor α account for around 70% of cases and are mostly treated with targeted endocrine therapy. However, depending on the degree of severity of the [...] Read more.
Breast cancer is one of the leading causes of death for women worldwide. Patients whose tumors express Estrogen Receptor α account for around 70% of cases and are mostly treated with targeted endocrine therapy. However, depending on the degree of severity of the disease at diagnosis, 10 to 40% of these tumors eventually relapse due to resistance development. Even though recent novel approaches as the combination with CDK4/6 inhibitors increased the overall survival of relapsing patients, this remains relatively short and there is a urgent need to find alternative targetable pathways. In this study we profiled the early phases of the resistance development process to uncover drivers of this phenomenon. Time-resolved analysis revealed that ATF3, a member of the ATF/CREB family of transcription factors, acts as a novel regulator of the response to therapy via rewiring of central signaling processes towards the adaptation to endocrine treatment. ATF3 was found to be essential in controlling crucial processes such as proliferation, cell cycle, and apoptosis during the early response to treatment through the regulation of MAPK/AKT signaling pathways. Its essential role was confirmed in vivo in a mouse model, and elevated expression of ATF3 was verified in patient datasets, adding clinical relevance to our findings. This study proposes ATF3 as a novel mediator of endocrine resistance development in breast cancer and elucidates its role in the regulation of downstream pathways activities. Full article
Show Figures

Graphical abstract

Open AccessArticle
L-Arginine/Nitric Oxide Pathway Is Altered in Colorectal Cancer and Can Be Modulated by Novel Derivatives from Oxicam Class of Non-Steroidal Anti-Inflammatory Drugs
Cancers 2020, 12(9), 2594; https://doi.org/10.3390/cancers12092594 - 11 Sep 2020
Cited by 1 | Viewed by 870
Abstract
L-arginine/nitric oxide pathway metabolites are altered in colorectal cancer (CRC). We evaluated underlying changes in pathway enzymes in 55 paired tumor/tumor-adjacent samples and 20 normal mucosa using quantitative-PCR and assessed the impact of classic and novel oxicam analogues on enzyme expression and intracellular [...] Read more.
L-arginine/nitric oxide pathway metabolites are altered in colorectal cancer (CRC). We evaluated underlying changes in pathway enzymes in 55 paired tumor/tumor-adjacent samples and 20 normal mucosa using quantitative-PCR and assessed the impact of classic and novel oxicam analogues on enzyme expression and intracellular metabolite concentration (LC-MS/MS) in Caco-2, HCT116, and HT-29 cells. Compared to normal mucosa, ARG1, PRMT1, and PRMT5 were overexpressed in both tumor and tumor-adjacent tissue and DDAH2 solely in tumor-adjacent tissue. Tumor-adjacent tissue had higher expression of ARG1, DDAH1, and DDAH2 and lower NOS2 than patients-matched tumors. The ARG1 expression in tumors increased along with tumor grade and reflected lymph node involvement. Novel oxicam analogues with arylpiperazine moiety at the thiazine ring were more effective in downregulating DDAHs and PRMTs and upregulating ARG2 than piroxicam and meloxicam. An analogue distinguished by propylene linker between thiazine’s and piperazine’s nitrogen atoms and containing two fluorine substituents was the strongest inhibitor of DDAHs and PRMTs expression, while an analogue containing propylene linker but no fluorine substituents was the strongest inhibitor of ARG2 expression. Metabolic reprogramming in CRC includes overexpression of DDAHs and PRMTs in addition to ARG1 and NOS2 and is not restricted to tumor tissue but can be modulated by novel oxicam analogues. Full article
Show Figures

Figure 1

Open AccessReview
Electroporation-Based Treatments in Urology
Cancers 2020, 12(8), 2208; https://doi.org/10.3390/cancers12082208 - 07 Aug 2020
Cited by 4 | Viewed by 949
Abstract
The observation that an application of a pulsed electric field (PEF) resulted in an increased permeability of the cell membrane has led to the discovery of the phenomenon called electroporation (EP). Depending on the parameters of the electric current and cell features, electroporation [...] Read more.
The observation that an application of a pulsed electric field (PEF) resulted in an increased permeability of the cell membrane has led to the discovery of the phenomenon called electroporation (EP). Depending on the parameters of the electric current and cell features, electroporation can be either reversible or irreversible. The irreversible electroporation (IRE) found its use in urology as a non-thermal ablative method of prostate and renal cancer. As its mechanism is based on the permeabilization of cell membrane phospholipids, IRE (as well as other treatments based on EP) provides selectivity sparing extracellular proteins and matrix. Reversible EP enables the transfer of genes, drugs, and small exogenous proteins. In clinical practice, reversible EP can locally increase the uptake of cytotoxic drugs such as cisplatin and bleomycin. This approach is known as electrochemotherapy (ECT). Few in vivo and in vitro trials of ECT have been performed on urological cancers. EP provides the possibility of transmission of genes across the cell membrane. As the protocols of gene electrotransfer (GET) over the last few years have improved, EP has become a well-known technique for non-viral cell transfection. GET involves DNA transfection directly to the cancer or the host skin and muscle tissue. Among urological cancers, the GET of several plasmids encoding prostate cancer antigens has been investigated in clinical trials. This review brings into discussion the underlying mechanism of EP and an overview of the latest progress and development perspectives of EP-based treatments in urology. Full article
Show Figures

Figure 1

Open AccessArticle
Cisplatin Decreases ENaC Activity Contributing to Renal Salt Wasting Syndrome
Cancers 2020, 12(8), 2140; https://doi.org/10.3390/cancers12082140 - 01 Aug 2020
Cited by 1 | Viewed by 734
Abstract
Cisplatin (CDDP) is an important anticancer drug. A common side effect of CDDP is renal salt and water-wasting syndrome (RSWS). The origin of RSWS is obscure. Emerging evidence, though, suggests that broad inhibition of sodium transport proteins by CDDP may result in decreases [...] Read more.
Cisplatin (CDDP) is an important anticancer drug. A common side effect of CDDP is renal salt and water-wasting syndrome (RSWS). The origin of RSWS is obscure. Emerging evidence, though, suggests that broad inhibition of sodium transport proteins by CDDP may result in decreases in tubular reabsorption, causing increases in sodium and water excretion. In this sense, CDDP would be acting like a diuretic. The effect of CDDP on the epithelial Na+ channel (ENaC), which is the final arbiter fine-tuning renal Na+ excretion, is unknown. We test here whether CDDP affects ENaC to promote renal salt and water excretion. The effects of CDDP and benzamil (BZM), a blocker of ENaC, on excretion of a sodium load were quantified. Similar to BZM, CDDP facilitated renal Na+ excretion. To directly quantify the effects on ENaC, principal cells in split-open tubules were patch clamped. CDDP, at doses comparable to those used for chemotherapy (1.5 µM), significantly decreased ENaC activity in native tubules. To further elaborate on this mechanism, the dose-dependent effects of CDDP on mouse ENaC (mENaC) heterologously expressed in Chinese Hamster Ovary (CHO) cells were tested using patch clamping. As in native tubules, CDDP significantly decreased the activity of mENaC expressed in CHO cells. Dose–response curves and competition with amiloride identified CDDP as a weak inhibitor of ENaC (apparent IC50 = 1 µM) that competes with amiloride for inhibition of the channel, weakening the inhibitory actions of the latter. Such observations are consistent with CDDP being a partial modulator of ENaC, which possibly has a binding site that overlaps with that of amiloride. These findings are consistent with inhibition of ENaC by CDDP contributing to the RSWS caused by this important chemotherapy drug. Full article
Show Figures

Figure 1

Open AccessArticle
Mambalgin-2 Induces Cell Cycle Arrest and Apoptosis in Glioma Cells via Interaction with ASIC1a
Cancers 2020, 12(7), 1837; https://doi.org/10.3390/cancers12071837 - 08 Jul 2020
Cited by 5 | Viewed by 1092
Abstract
Gliomas are fast growing and highly invasive brain tumors, characterized by tumor microenvironment acidification that drives glioma cell growth and migration. Channels containing Acid-sensing Ion Channel 1a subunit (ASIC1a) mediate amiloride-sensitive cation influx in late stage glioma cells, but not in normal astrocytes. [...] Read more.
Gliomas are fast growing and highly invasive brain tumors, characterized by tumor microenvironment acidification that drives glioma cell growth and migration. Channels containing Acid-sensing Ion Channel 1a subunit (ASIC1a) mediate amiloride-sensitive cation influx in late stage glioma cells, but not in normal astrocytes. Thus, selective targeting of ASIC1a can be a perspective strategy for glioma treatment. Here, ASIC1a expression in U251 MG and A172 glioma cells, but not in normal astrocytes, was demonstrated. Recombinant analog of mambalgin-2 from black mamba Dendroaspis polylepis inhibited amiloride-sensitive currents at ASIC1a both in Xenopus laevis oocytes and in U251 MG cells, while its mutants with impaired activity towards this channel did not. Mambalgin-2 inhibited U251 MG and A172 glioma cells growth with EC50 in the nanomolar range without affecting the proliferation of normal astrocytes. Notably, mambalgin-2 mutants did not affect glioma cell proliferation, pointing on ASIC1a as the main molecular target of mambalgin-2 in U251 MG and A172 cells. Mambalgin-2 induced a cell cycle arrest, inhibited Cyclin D1 and cyclin-dependent kinases (CDK) phosphorylation and caused apoptosis in U251 MG and A172 cells. Moreover, mambalgin-2 inhibited the growth of low-passage primary cells from a patient with glioblastoma. Altogether, our data point to mambalgin-2 as a useful hit for the development of new drugs for glioma treatment. Full article
Show Figures

Figure 1

Open AccessArticle
Erdafitinib Resensitizes ABCB1-Overexpressing Multidrug-Resistant Cancer Cells to Cytotoxic Anticancer Drugs
Cancers 2020, 12(6), 1366; https://doi.org/10.3390/cancers12061366 - 26 May 2020
Cited by 4 | Viewed by 999
Abstract
The development of multidrug resistance (MDR) in cancer patients, which is often associated with the overexpression of ABCB1 (MDR1, P-glycoprotein) in cancer cells, remains a significant problem in cancer chemotherapy. ABCB1 is one of the major adenosine triphosphate (ATP)-binding cassette (ABC) transporters that [...] Read more.
The development of multidrug resistance (MDR) in cancer patients, which is often associated with the overexpression of ABCB1 (MDR1, P-glycoprotein) in cancer cells, remains a significant problem in cancer chemotherapy. ABCB1 is one of the major adenosine triphosphate (ATP)-binding cassette (ABC) transporters that can actively efflux a range of anticancer drugs out of cancer cells, causing MDR. Given the lack of Food and Drug Administration (FDA)-approved treatment for multidrug-resistant cancers, we explored the prospect of repurposing erdafitinib, the first fibroblast growth factor receptor (FGFR) kinase inhibitor approved by the FDA, to reverse MDR mediated by ABCB1. We discovered that by reducing the function of ABCB1, erdafitinib significantly resensitized ABCB1-overexpressing multidrug-resistant cancer cells to therapeutic drugs at sub-toxic concentrations. Results of erdafitinib-stimulated ABCB1 ATPase activity and in silico docking analysis of erdafitinib binding to the substrate-binding pocket of ABCB1 further support the interaction between erdafitinib and ABCB1. Moreover, our data suggest that ABCB1 is not a major mechanism of resistance to erdafitinib in cancer cells. In conclusion, we revealed an additional action of erdafitinib as a potential treatment option for multidrug-resistant cancers, which should be evaluated in future drug combination trials. Full article
Show Figures

Figure 1

Open AccessArticle
Chemotherapeutic Agents Sensitize Resistant Cancer Cells to the DR5-Specific Variant DR5-B More Efficiently Than to TRAIL by Modulating the Surface Expression of Death and Decoy Receptors
Cancers 2020, 12(5), 1129; https://doi.org/10.3390/cancers12051129 - 30 Apr 2020
Viewed by 830
Abstract
TRAIL is considered a promising antitumor agent because it causes apoptosis of transformed cells without affecting normal cells. However, many types of tumors are cytokine resistant, and combination therapy with various chemotherapeutic drugs is being developed to overcome the resistance. We have demonstrated [...] Read more.
TRAIL is considered a promising antitumor agent because it causes apoptosis of transformed cells without affecting normal cells. However, many types of tumors are cytokine resistant, and combination therapy with various chemotherapeutic drugs is being developed to overcome the resistance. We have demonstrated that the combination of TRAIL with doxorubicin, bortezomib, and panobinostat dramatically reduced the viability of TRAIL-resistant A549 and HT-29 cells. Chemotherapy even more efficiently sensitized cells to the DR5-specific mutant variant of TRAIL DR5-B, which does not have an affinity for decoy receptors. Bortezomib and doxorubicin greatly enhanced the surface expression of the death receptors DR5 and DR4, while panobinostat increased expression of DR5 and suppressed expression of DR4 in both cell lines. All drugs increased surface expression of the decoy receptors DcR1 and DcR2. Unlike the combined treatment, if the cells were pretreated with chemotherapy for 24 h, the cytotoxic activity of TRAIL was less pronounced, while sequential treatment of cells enhanced the effectiveness of DR5-B. The same results were obtained with agonistic anti-DR5 antibodies. Thus, the effectiveness of TRAIL was rather limited due to changes in the ratio of death and decoy receptors and DR5-specific agonists may be preferred in combination antitumor therapy regimens. Full article
Show Figures

Figure 1

Open AccessArticle
Nelfinavir Inhibits the TCF11/Nrf1-Mediated Proteasome Recovery Pathway in Multiple Myeloma
Cancers 2020, 12(5), 1065; https://doi.org/10.3390/cancers12051065 - 25 Apr 2020
Cited by 6 | Viewed by 1935
Abstract
Proteasome inhibitors are the backbone of multiple myeloma therapy. However, disease progression or early relapse occur due to development of resistance to the therapy. One important cause of resistance to proteasome inhibition is the so-called bounce-back response, a recovery pathway driven by the [...] Read more.
Proteasome inhibitors are the backbone of multiple myeloma therapy. However, disease progression or early relapse occur due to development of resistance to the therapy. One important cause of resistance to proteasome inhibition is the so-called bounce-back response, a recovery pathway driven by the TCF11/Nrf1 transcription factor, which activates proteasome gene re-synthesis upon impairment of the proteasome function. Thus, inhibiting this recovery pathway potentiates the cytotoxic effect of proteasome inhibitors and could benefit treatment outcomes. DDI2 protease, the 3D structure of which resembles the HIV protease, serves as the key player in TCF11/Nrf1 activation. Previous work found that some HIV protease inhibitors block DDI2 in cell-based experiments. Nelfinavir, an oral anti-HIV drug, inhibits the proteasome and/or pAKT pathway and has shown promise for treatment of relapsed/refractory multiple myeloma. Here, we describe how nelfinavir inhibits the TCF11/Nrf1-driven recovery pathway by a dual mode of action. Nelfinavir decreases the total protein level of TCF11/Nrf1 and inhibits TCF11/Nrf1 proteolytic processing, likely by interfering with the DDI2 protease, and therefore reduces the TCF11/Nrf1 protein level in the nucleus. We propose an overall mechanism that explains nelfinavir’s effectiveness in the treatment of multiple myeloma. Full article
Show Figures

Graphical abstract

Open AccessArticle
Glucocorticoids Promote the Onset of Acute Experimental Colitis and Cancer by Upregulating mTOR Signaling in Intestinal Epithelial Cells
Cancers 2020, 12(4), 945; https://doi.org/10.3390/cancers12040945 - 11 Apr 2020
Cited by 2 | Viewed by 1144
Abstract
The therapeutic effects of glucocorticoids on colitis and colitis-associated cancer are unclear. In this study, we investigated the therapeutic roles of glucocorticoids in acute experimental ulcerative colitis and colitis-associated cancer in mice and their immunoregulatory mechanisms. Murine acute ulcerative colitis was induced by [...] Read more.
The therapeutic effects of glucocorticoids on colitis and colitis-associated cancer are unclear. In this study, we investigated the therapeutic roles of glucocorticoids in acute experimental ulcerative colitis and colitis-associated cancer in mice and their immunoregulatory mechanisms. Murine acute ulcerative colitis was induced by dextran sulfate sodium (DSS) and treated with dexamethasone (Dex) at different doses. Dex significantly exacerbated the onset and severity of DSS-induced colitis and potentiated mucosal inflammatory macrophage and neutrophil infiltration, as well as cytokine production. Furthermore, under inflammatory conditions, the expression of the glucocorticoid receptor (GR) did not change significantly, while mammalian target of rapamycin (mTOR) signaling was higher in colonic epithelial cells than in colonic immune cells. The deletion of mTOR in intestinal epithelial cells, but not that in myeloid immune cells, in mice significantly ameliorated the severe course of colitis caused by Dex, including weight loss, clinical score, colon length, pathological damage, inflammatory cell infiltration and pro-inflammatory cytokine production. These data suggest that mTOR signaling in intestinal epithelial cells, mainly mTORC1, plays a critical role in the Dex-induced exacerbation of acute colitis and colitis-associated cancer. Thus, these pieces of evidence indicate that glucocorticoid-induced mTOR signaling in epithelial cells is required in the early stages of acute ulcerative colitis by modulating the dynamics of innate immune cell recruitment and activation. Full article
Show Figures

Figure 1

Open AccessArticle
Preclinical Study Using ABT263 to Increase Enzalutamide Sensitivity to Suppress Prostate Cancer Progression Via Targeting BCL2/ROS/USP26 Axis Through Altering ARv7 Protein Degradation
Cancers 2020, 12(4), 831; https://doi.org/10.3390/cancers12040831 - 30 Mar 2020
Cited by 4 | Viewed by 948
Abstract
Background: The recently developed antiandrogen, Enzalutamide (Enz), has reformed the standard of care for castration resistant prostate cancer (CRPC) patients. However, Enz-resistance inevitably emerges despite success of Enz in prolonging CRPC patients’ survival. Here we found that Enz-resistant prostate cancer (PCa) cells had [...] Read more.
Background: The recently developed antiandrogen, Enzalutamide (Enz), has reformed the standard of care for castration resistant prostate cancer (CRPC) patients. However, Enz-resistance inevitably emerges despite success of Enz in prolonging CRPC patients’ survival. Here we found that Enz-resistant prostate cancer (PCa) cells had higher BCL2 expression. We aimed to test whether targeting BCL2 would influence Enz sensitivity of prostate cancer (PCa) and identify the potential mechanism. Methods: The study was designed to target Enz-induced BCL2 with inhibitor ABT263 and test Enz sensitivity in Enz-resistant PCa cells by MTT assay. Cellular reactive oxygen species (ROS) levels were detected with dihydroethidium staining, and in vitro deubiquitinating enzyme activity assay was used to evaluate ubiquitin specific protease 26 (USP26) activity. Results: ABT263 could increase Enz sensitivity in both Enz-sensitive and Enz-resistant PCa cells via inducing ROS generation. Elevated cellular ROS levels might then inhibit USP26 activity to increase the ubiquitination of androgen receptor (AR) and AR splice variant 7 (ARv7) and their ubiquitin/proteasome-dependent degradation, which contributed to the increase of Enz sensitivity. In vivo mouse model also demonstrates that ABT263 will suppress the PCa progression. Conclusion: This study demonstrated that targeting Enz-induced BCL2 with inhibitor ABT263 could increase Enz sensitivity in both Enz-sensitive and Enz-resistant PCa cells through induction of cellular ROS levels and suppression of USP26 activity with a consequent increase of ubiquitin/proteasome-dependent degradation of AR and ARv7 protein expression. Full article
Show Figures

Figure 1

Open AccessArticle
Carbon-Ion Beam Irradiation Alone or in Combination with Zoledronic acid Effectively Kills Osteosarcoma Cells
Cancers 2020, 12(3), 698; https://doi.org/10.3390/cancers12030698 - 16 Mar 2020
Cited by 4 | Viewed by 905
Abstract
Osteosarcoma (OSA) is the most common malignant bone tumor in children and adolescents. The overall five-year survival rate for all bone cancers is below 70%; however, when the cancer has spread beyond the bone, it is about 15–30%. Herein, we evaluated the effects [...] Read more.
Osteosarcoma (OSA) is the most common malignant bone tumor in children and adolescents. The overall five-year survival rate for all bone cancers is below 70%; however, when the cancer has spread beyond the bone, it is about 15–30%. Herein, we evaluated the effects of carbon-ion beam irradiation alone or in combination with zoledronic acid (ZOL) on OSA cells. Carbon-ion beam irradiation in combination with ZOL significantly inhibited OSA cell proliferation by arresting cell cycle progression and initiating KHOS and U2OS cell apoptosis, compared to treatments with carbon-ion beam irradiation, X-ray irradiation, and ZOL alone. Moreover, we observed that this combination greatly inhibited OSA cell motility and invasion, accompanied by the suppression of the Pi3K/Akt and MAPK signaling pathways, which are related to cell proliferation and survival, compared to individual treatments with carbon-ion beam or X-ray irradiation, or ZOL. Furthermore, ZOL treatment upregulated microRNA (miR)-29b expression; the combination with a miR-29b mimic further decreased OSA cell viability via activation of the caspase 3 pathway. Thus, ZOL-mediated enhancement of carbon-ion beam radiosensitivity may occur via miR-29b upregulation; co-treatment with the miR-29b mimic further decreased OSA cell survival. These findings suggest that the carbon-ion beam irradiation in combination with ZOL has high potential to increase OSA cell death. Full article
Show Figures

Figure 1

Open AccessFeature PaperArticle
Autophagic Inhibition via Lysosomal Integrity Dysfunction Leads to Antitumor Activity in Glioma Treatment
Cancers 2020, 12(3), 543; https://doi.org/10.3390/cancers12030543 - 27 Feb 2020
Cited by 2 | Viewed by 1461
Abstract
Manipulating autophagy is a promising strategy for treating cancer as several autophagy inhibitors are shown to induce autophagic cell death. One of these, autophagonizer (APZ), induces apoptosis-independent cell death by binding an unknown target via an unknown mechanism. To identify APZ targets, we [...] Read more.
Manipulating autophagy is a promising strategy for treating cancer as several autophagy inhibitors are shown to induce autophagic cell death. One of these, autophagonizer (APZ), induces apoptosis-independent cell death by binding an unknown target via an unknown mechanism. To identify APZ targets, we used a label-free drug affinity responsive target stability (DARTS) approach with a liquid chromatography/tandem mass spectrometry (LC–MS/MS) readout. Of 35 protein interactors, we identified Hsp70 as a key target protein of unmodified APZ in autophagy. Either APZ treatment or Hsp70 inhibition attenuates integrity of lysosomes, which leads to autophagic cell death exhibiting an excellent synergism with a clinical drug, temozolomide, in vitro, in vivo, and orthotropic glioma xenograft model. These findings demonstrate the potential of APZ to induce autophagic cell death and its development to combinational chemotherapeutic agent for glioma treatment. Collectively, our study demonstrated that APZ, a new autophagy inhibitor, can be used as a potent antitumor drug candidate to get over unassailable glioma and revealed a novel function of Hsp70 in lysosomal integrity regulation of autophagy. Full article
Show Figures

Graphical abstract

Open AccessArticle
The Role of p53-Mediated Signaling in the Therapeutic Response of Colorectal Cancer to 9F, a Spermine-Modified Naphthalene Diimide Derivative
Cancers 2020, 12(3), 528; https://doi.org/10.3390/cancers12030528 - 25 Feb 2020
Cited by 1 | Viewed by 979
Abstract
Colorectal cancer (CRC) is one of the most prevalent cancers due to its frequency and high rate of mortality. Polyamine-vectorized anticancer drugs possess multiple biological properties. Of these drugs, 9F has been shown to inhibit tumor growth and the metastasis of hepatocellular carcinoma. [...] Read more.
Colorectal cancer (CRC) is one of the most prevalent cancers due to its frequency and high rate of mortality. Polyamine-vectorized anticancer drugs possess multiple biological properties. Of these drugs, 9F has been shown to inhibit tumor growth and the metastasis of hepatocellular carcinoma. This current study aims to investigate the effects of 9F on CRC and determine its molecular mechanisms of action. Our findings demonstrate that 9F inhibits CRC cell growth by inducing apoptosis and cell cycle arrest, and suppresses migration, invasion and angiogenesis in vitro, resulting in the inhibition of tumor growth and metastasis in vivo. Based on RNA-seq data, further bioinformatic analyses suggest that 9F exerts its anticancer activities through p53 signaling, which is responsible for the altered expression of key regulators of the cell cycle, apoptosis, the epithelial-to-mesenchymal transition (EMT), and angiogenesis. In addition, 9F is more effective than amonafide against CRC. These results show that 9F can be considered as a potential strategy for CRC treatment. Full article
Show Figures

Graphical abstract

Open AccessReview
Targeting Cancer Metabolism to Resensitize Chemotherapy: Potential Development of Cancer Chemosensitizers from Traditional Chinese Medicines
Cancers 2020, 12(2), 404; https://doi.org/10.3390/cancers12020404 - 10 Feb 2020
Cited by 10 | Viewed by 1190
Abstract
Cancer is a common and complex disease with high incidence and mortality rates, which causes a severe public health problem worldwide. As one of the standard therapeutic approaches for cancer therapy, the prognosis and outcome of chemotherapy are still far from satisfactory due [...] Read more.
Cancer is a common and complex disease with high incidence and mortality rates, which causes a severe public health problem worldwide. As one of the standard therapeutic approaches for cancer therapy, the prognosis and outcome of chemotherapy are still far from satisfactory due to the severe side effects and increasingly acquired resistance. The development of novel and effective treatment strategies to overcome chemoresistance is urgent for cancer therapy. Metabolic reprogramming is one of the hallmarks of cancer. Cancer cells could rewire metabolic pathways to facilitate tumorigenesis, tumor progression, and metastasis, as well as chemoresistance. The metabolic reprogramming may serve as a promising therapeutic strategy and rekindle the research enthusiasm for overcoming chemoresistance. This review focuses on emerging mechanisms underlying rewired metabolic pathways for cancer chemoresistance in terms of glucose and energy, lipid, amino acid, and nucleotide metabolisms, as well as other related metabolisms. In particular, we highlight the potential of traditional Chinese medicine as a chemosensitizer for cancer chemotherapy from the metabolic perspective. The perspectives of metabolic targeting to chemoresistance are also discussed. In conclusion, the elucidation of the underlying metabolic reprogramming mechanisms by which cancer cells develop chemoresistance and traditional Chinese medicines resensitize chemotherapy would provide us a new insight into developing promising therapeutics and scientific evidence for clinical use of traditional Chinese medicine as a chemosensitizer for cancer therapy. Full article
Show Figures

Figure 1

Open AccessArticle
Heterogeneous Responses of Gastric Cancer Cell Lines to Tenovin-6 and Synergistic Effect with Chloroquine
Cancers 2020, 12(2), 365; https://doi.org/10.3390/cancers12020365 - 05 Feb 2020
Cited by 3 | Viewed by 1181
Abstract
Gastric cancer (GC) is the fifth most frequently diagnosed cancer and the third leading cause of cancer death. Approximately 15% of GC is associated with Epstein–Barr virus (EBV). GC is largely incurable with a dismal five-year survival rate. There is an urgent need [...] Read more.
Gastric cancer (GC) is the fifth most frequently diagnosed cancer and the third leading cause of cancer death. Approximately 15% of GC is associated with Epstein–Barr virus (EBV). GC is largely incurable with a dismal five-year survival rate. There is an urgent need to identify new therapeutic agents for the treatment of GC. Tenovin-6 was initially identified as a p53 activator, but it was later found to inhibit autophagy flux, and the protein deacetylase activity of sirtuins. Tenovin-6 shows promising therapeutic effect in various malignancies. However, it remains unknown whether Tenovin-6 is effective for GC. In this study, we found that EBV-positive and -negative GC cell lines were sensitive to Tenovin-6 but with different response times and doses. Tenovin-6 suppressed anchorage-independent growth of GC cells. Tenovin-6 induced different levels of apoptosis and phases of cell-cycle arrest depending on the cell lines with some manifesting gap 1 (G1) and others showing synthesis (S) phase cell-cycle arrest. Mechanistically, Tenovin-6 induced autophagy or p53 activation in GC cells depending on the status of TP53 gene. However, initiation of autophagy following treatment with Tenovin-6 conferred some protective effect on numerous cells. Combined treatment with Tenovin-6 and autophagy inhibitor chloroquine increased the cytotoxic effect by inducing microtubule-associated protein 1 light chain 3B (LC3B)-II accumulation, and by enhancing apoptosis and cell-cycle arrest. These results indicated that Tenovin-6 can be used as a potential therapeutic agent for GC, but the genetic background of the cancer cells might determine the response and mechanism of action. Treatment with Tenovin-6 alone or in combination with chloroquine could be a promising therapeutic approach for GC. Full article
Show Figures

Figure 1

Open AccessArticle
Combination of Decitabine and Entinostat Synergistically Inhibits Urothelial Bladder Cancer Cells via Activation of FoxO1
Cancers 2020, 12(2), 337; https://doi.org/10.3390/cancers12020337 - 03 Feb 2020
Cited by 4 | Viewed by 1005
Abstract
Occurrence of cisplatin-resistance in bladder cancer is frequent and results in disease progression. Thus, novel therapeutic approaches are a high medical need for patients suffering from chemotherapy failure. The purpose of this study was to test the combination of the DNA methyltransferase inhibitor [...] Read more.
Occurrence of cisplatin-resistance in bladder cancer is frequent and results in disease progression. Thus, novel therapeutic approaches are a high medical need for patients suffering from chemotherapy failure. The purpose of this study was to test the combination of the DNA methyltransferase inhibitor decitabine (DAC) with the histone deacetylase inhibitor entinostat (ENT) in bladder cancer cells with different platinum sensitivities: J82, cisplatin-resistant J82CisR, and RT-112. Intermittent treatment of J82 cells with cisplatin resulted in the six-fold more cisplatin-resistant cell line J82CisR. Combinations of DAC and/or ENT plus cisplatin could not reverse chemoresistance. However, the combination of DAC and ENT acted cytotoxic in a highly synergistic manner as shown by Chou-Talalay analysis via induction of apoptosis and cell cycle arrest. Importantly, this effect was cancer cell-selective as no synergism was found for the combination in the non-cancerous urothelial cell line HBLAK. Expression analysis indicated that epigenetic treatment led to up-regulation of forkhead box class O1 (FoxO1) and further activated proapoptotic Bim and the cell cycle regulator p21 and reduced expression of survivin in J82CisR. In conclusion, the combination of DAC and ENT is highly synergistic and has a promising potential for therapy of bladder cancer, particularly in cases with platinum resistance. Full article
Show Figures

Graphical abstract

Open AccessArticle
Resistance to MET/VEGFR2 Inhibition by Cabozantinib Is Mediated by YAP/TBX5-Dependent Induction of FGFR1 in Castration-Resistant Prostate Cancer
Cancers 2020, 12(1), 244; https://doi.org/10.3390/cancers12010244 - 19 Jan 2020
Cited by 4 | Viewed by 1376
Abstract
The overall goal of this study was to elucidate the role of FGFR1 induction in acquired resistance to MET and VEGFR2 inhibition by cabozantinib in prostate cancer (PCa) and leverage this understanding to improve therapy outcomes. The response to cabozantinib was examined in [...] Read more.
The overall goal of this study was to elucidate the role of FGFR1 induction in acquired resistance to MET and VEGFR2 inhibition by cabozantinib in prostate cancer (PCa) and leverage this understanding to improve therapy outcomes. The response to cabozantinib was examined in mice bearing patient-derived xenografts in which FGFR1 was overexpressed. Using a variety of cell models that reflect different PCa disease states, the mechanism underpinning FGFR1 signaling activation by cabozantinib was investigated. We performed parallel investigations in specimens from cabozantinib-treated patients to confirm our in vitro and in vivo data. FGFR1 overexpression was sufficient to confer resistance to cabozantinib. Our results demonstrate transcriptional activation of FGF/FGFR1 expression in cabozantinib-resistant models. Further analysis of molecular pathways identified a YAP/TBX5-driven mechanism of FGFR1 and FGF overexpression induced by MET inhibition. Importantly, knockdown of YAP and TBX5 led to decreased FGFR1 protein expression and decreased mRNA levels of FGFR1, FGF1, and FGF2. This association was confirmed in a cohort of hormone-naïve patients with PCa receiving androgen deprivation therapy and cabozantinib, further validating our findings. These findings reveal that the molecular basis of resistance to MET inhibition in PCa is FGFR1 activation through a YAP/TBX5-dependent mechanism. YAP and its downstream target TBX5 represent a crucial mediator in acquired resistance to MET inhibitors. Thus, our studies provide insight into the mechanism of acquired resistance and will guide future development of clinical trials with MET inhibitors. Full article
Show Figures

Figure 1

Open AccessArticle
Sitravatinib Sensitizes ABCB1- and ABCG2-Overexpressing Multidrug-Resistant Cancer Cells to Chemotherapeutic Drugs
Cancers 2020, 12(1), 195; https://doi.org/10.3390/cancers12010195 - 13 Jan 2020
Cited by 6 | Viewed by 1174
Abstract
The development of multidrug resistance (MDR) in cancer patients driven by the overexpression of ATP-binding cassette (ABC) transporter ABCB1 or ABCG2 in cancer cells presents one of the most daunting therapeutic complications for clinical scientists to resolve. Despite many novel therapeutic strategies that [...] Read more.
The development of multidrug resistance (MDR) in cancer patients driven by the overexpression of ATP-binding cassette (ABC) transporter ABCB1 or ABCG2 in cancer cells presents one of the most daunting therapeutic complications for clinical scientists to resolve. Despite many novel therapeutic strategies that have been tested over the years, there is still no approved treatment for multidrug-resistant cancers to date. We have recently adopted a drug repurposing approach to identify therapeutic agents that are clinically active and at the same time, capable of reversing multidrug resistance mediated by ABCB1 and ABCG2. In the present study, we investigated the effect of sitravatinib, a novel multitargeted receptor tyrosine kinase inhibitor, on human ABCB1 and ABCG2 in multidrug-resistant cancer cell lines. We discovered that at submicromolar concentrations, sitravatinib re-sensitizes ABCB1- and ABCG2-overexpressing multidrug-resistant cancer cells to chemotherapeutic drugs. We found that sitravatinib blocks the drug efflux function of ABCB1 and ABCG2 in a concentration-dependent manner but does not significantly alter the protein expression of ABCB1 or ABCG2 in multidrug-resistant cancer cells. In conclusion, we reveal a potential drug repositioning treatment option for multidrug-resistant cancers by targeting ABCB1 and ABCG2 with sitravatinib and should be further investigated in future clinical trials. Full article
Show Figures

Figure 1

2019

Jump to: 2021, 2020, 2018

Open AccessArticle
The Application of Arsenic Trioxide in Ameliorating ABT-737 Target Therapy on Uterine Cervical Cancer Cells through Unique Pathways in Cell Death
Cancers 2020, 12(1), 108; https://doi.org/10.3390/cancers12010108 - 31 Dec 2019
Cited by 2 | Viewed by 1093
Abstract
ABT-737, a B cell lymphoma-2 (Bcl-2) family inhibitor, activates apoptosis in cancer cells. Arsenic trioxide is an apoptosis activator that impairs cancer cell survival. The aim of this study was to evaluate the effect of a combination treatment with ABT-737 and arsenic trioxide [...] Read more.
ABT-737, a B cell lymphoma-2 (Bcl-2) family inhibitor, activates apoptosis in cancer cells. Arsenic trioxide is an apoptosis activator that impairs cancer cell survival. The aim of this study was to evaluate the effect of a combination treatment with ABT-737 and arsenic trioxide on uterine cervical cancer cells. MTT (3-(4,5-dimethylthiazol-2-yl)-25-diphenyltetrazolium bromide) assay revealed that ABT-737 and arsenic trioxide induced a synergistic effect on uterine cervical cancer cells. Arsenic trioxide enhanced ABT-737-induced apoptosis and caspase-7 activation and the ABT-737-mediated reduction of anti-apoptotic protein Mcl-1 in Caski cells. Western blot assay revealed that arsenic trioxide promoted the ABT-737-mediated reduction of CDK6 and thymidylate synthetase in Caski cells. Arsenic trioxide promoted ABT-737-inhibited mitochondrial membrane potential and ABT-737-inhibited ANT expression in Caski cells. However, ABT-737-elicited reactive oxygen species were not enhanced by arsenic trioxide. The combined treatment induced an anti-apoptosis autophagy in SiHa cells. This study is the first to demonstrate that a combination treatment with ABT-737 and arsenic trioxide induces a synergistic effect on uterine cervical cancer cells through apoptosis. Our findings provide new insights into uterine cervical cancer treatment. Full article
Show Figures

Graphical abstract

Open AccessReview
Angioregulatory microRNAs in Colorectal Cancer
Cancers 2020, 12(1), 71; https://doi.org/10.3390/cancers12010071 - 26 Dec 2019
Cited by 12 | Viewed by 1532
Abstract
Colorectal cancer (CRC) is one of the leading causes of cancer mortality. Angiogenesis is a rate-determining step in CRC development and metastasis. The balance of angiogenic and antiangiogenic factors is crucial in this process. Angiogenesis-related genes can be regulated post-transcriptionally by microRNAs (miRNAs) [...] Read more.
Colorectal cancer (CRC) is one of the leading causes of cancer mortality. Angiogenesis is a rate-determining step in CRC development and metastasis. The balance of angiogenic and antiangiogenic factors is crucial in this process. Angiogenesis-related genes can be regulated post-transcriptionally by microRNAs (miRNAs) and some miRNAs have been shown to shuttle between tumor cells and the tumor microenvironment (TME). MiRNAs have context-dependent actions and can promote or suppress angiogenesis dependent on the type of cancer. On the one hand, miRNAs downregulate anti-angiogenic targets and lead to angiogenesis induction. Tumor suppressor miRNAs, on the other hand, enhance anti-angiogenic response by targeting pro-angiogenic factors. Understanding the interaction between these miRNAs and their target mRNAs will help to unravel molecular mechanisms involved in CRC progression. The aim of this article is to review the current literature on angioregulatory miRNAs in CRC. Full article
Show Figures

Figure 1

Open AccessReview
Overcoming Drug Resistance by Taking Advantage of Physical Principles: Pressurized Intraperitoneal Aerosol Chemotherapy (PIPAC)
Cancers 2020, 12(1), 34; https://doi.org/10.3390/cancers12010034 - 20 Dec 2019
Cited by 8 | Viewed by 1235
Abstract
Theoretical considerations as well as comprehensive preclinical and clinical data suggest that optimizing physical parameters of intraperitoneal drug delivery might help to circumvent initial or acquired resistance of peritoneal metastasis (PM) to chemotherapy. Pressurized Intraperitoneal Aerosol Chemotherapy (PIPAC) is a novel minimally invasive [...] Read more.
Theoretical considerations as well as comprehensive preclinical and clinical data suggest that optimizing physical parameters of intraperitoneal drug delivery might help to circumvent initial or acquired resistance of peritoneal metastasis (PM) to chemotherapy. Pressurized Intraperitoneal Aerosol Chemotherapy (PIPAC) is a novel minimally invasive drug delivery system systematically addressing the current limitations of intraperitoneal chemotherapy. The rationale behind PIPAC is: (1) optimizing homogeneity of drug distribution by applying an aerosol rather than a liquid solution; (2) applying increased intraperitoneal hydrostatic pressure to counteract elevated intratumoral interstitial fluid pressure; (3) limiting blood outflow during drug application; (4) steering environmental parameters (temperature, pH, electrostatic charge etc.) in the peritoneal cavity for best tissue target effect. In addition, PIPAC allows repeated application and objective assessment of tumor response by comparing biopsies between chemotherapy cycles. Although incompletely understood, the reasons that allow PIPAC to overcome established chemoresistance are probably linked to local dose intensification. All pharmacological data published so far show a superior therapeutic ratio (tissue concentration/dose applied) of PIPAC vs. systemic administration, of PIPAC vs. intraperitoneal liquid chemotherapy, of PIPAC vs. Hyperthermic Intraperitoneal Chemotherapy (HIPEC) or PIPAC vs. laparoscopic HIPEC. In the initial introduction phase, PIPAC has been used in patients who were quite ill and had already failed multiple treatment regimes, but it may not be limited to that group of patients in the future. Rapid diffusion of PIPAC in clinical practice worldwide supports its potential to become a game changer in the treatment of chemoresistant isolated PM of various origins. Full article
Show Figures

Graphical abstract

Open AccessArticle
Allometric Scaling Approaches for Predicting Human Pharmacokinetic of a Locked Nucleic Acid Oligonucleotide Targeting Cancer-Associated miR-221
Cancers 2020, 12(1), 27; https://doi.org/10.3390/cancers12010027 - 19 Dec 2019
Cited by 7 | Viewed by 928
Abstract
LNA-i-miR-221 is a novel phosphorothioate backbone 13-mer locked nucleic acid oligonucleotide-targeting microRNA-221 designed for the treatment of human malignancies. To understand the pharmacokinetic properties of this new agent, including unbound/total clearance, we investigated the LNA-i-miR-221 protein binding in three different species, including rat [...] Read more.
LNA-i-miR-221 is a novel phosphorothioate backbone 13-mer locked nucleic acid oligonucleotide-targeting microRNA-221 designed for the treatment of human malignancies. To understand the pharmacokinetic properties of this new agent, including unbound/total clearance, we investigated the LNA-i-miR-221 protein binding in three different species, including rat (Sprague–Dawley), monkey (Cynomolgus), and human. To this end, we generated a suitable ultrafiltration method to study the binding of LNA-i-miR-221 to plasma proteins. We identified that the fraction of LNA-i-miR-221 (at concentration of 1 and 10 µM) bound to rat, monkey, and human plasma proteins was high and ranged from 98.2 to 99.05%. This high protein binding of LNA-i-miR-221 to plasma proteins in all the species tested translates into a pharmacokinetic advantage by preventing rapid renal clearance. The integration of these results into multiple allometric interspecies scaling methods was then used to draw inferences about LNA-i-miR-221 pharmacokinetics in humans, thereby providing a framework for definition of safe starting and escalation doses and moving towards a first human clinical trial of LNA-i-miR-221. Full article
Show Figures

Figure 1

Open AccessArticle
5-Fluorouracil as a Tumor-Treating Field-Sensitizer in Colon Cancer Therapy
Cancers 2019, 11(12), 1999; https://doi.org/10.3390/cancers11121999 - 12 Dec 2019
Cited by 5 | Viewed by 2134
Abstract
Colorectal cancer (CRC) is a major cause of mortality that can be treated effectively with chemotherapy and radiotherapy, although resistance to these therapeutic modalities often occurs. Tumor-treating fields (TTFields) can block tumor growth by selectively impairing tumor cell division. In this study, we [...] Read more.
Colorectal cancer (CRC) is a major cause of mortality that can be treated effectively with chemotherapy and radiotherapy, although resistance to these therapeutic modalities often occurs. Tumor-treating fields (TTFields) can block tumor growth by selectively impairing tumor cell division. In this study, we investigated the mechanism by which 5-fluorouracil (5-FU) sensitizes tumor cells to TTFields. Human HCT116 and SW480 CRC cells were treated with 5-FU and/or TTFields, and characterized in vitro in terms of cell viability, apoptosis through reactive oxygen species production, autophagy, and metastatic potentials. The biological effects of 5-FU and/or TTFields were studied via positron emission tomography and computed tomography on xenograft tumor growth and were confirmed with organoid models of patients. Our results revealed that combination treatment with 5-FU and TTFields increased the efficiency of TTFields therapy in colon cancer cells by downregulating signaling pathways associated with cell proliferation, survival, cell invasion, and migration while upregulating pathways mediating apoptosis and autophagic cell death. The novel mechanistic insights gleaned in this study suggest that combination therapy with TTFields and 5-FU may be effective in treating CRC, although safety and efficacy testing in patients with CRC will need to be performed before this strategy can be implemented clinically for TTF-sensitization. Full article
Show Figures

Figure 1

Open AccessArticle
Radiosensitization of Non-Small Cell Lung Cancer Cells by the Plk1 Inhibitor Volasertib Is Dependent on the p53 Status
Cancers 2019, 11(12), 1893; https://doi.org/10.3390/cancers11121893 - 28 Nov 2019
Cited by 5 | Viewed by 1351
Abstract
Polo-like kinase 1 (Plk1), a master regulator of mitotic cell division, is highly expressed in non-small cell lung cancer (NSCLC) making it an interesting drug target. We examined the in vitro therapeutic effects of volasertib, a Plk1 inhibitor, in combination with irradiation in [...] Read more.
Polo-like kinase 1 (Plk1), a master regulator of mitotic cell division, is highly expressed in non-small cell lung cancer (NSCLC) making it an interesting drug target. We examined the in vitro therapeutic effects of volasertib, a Plk1 inhibitor, in combination with irradiation in a panel of NSCLC cell lines with different p53 backgrounds. Pretreatment with volasertib efficiently sensitized p53 wild type cells to irradiation. Flow cytometric analysis revealed that significantly more cells were arrested in the G2/M phase of the cell cycle after the combination therapy compared to either treatment alone (p < 0.005). No significant synergistic induction of apoptotic cell death was observed, but, importantly, significantly more senescent cells were detected when cells were pretreated with volasertib before irradiation compared to both monotherapies alone (p < 0.001), especially in cells with functional p53. Consequently, while most cells with functional p53 showed permanent growth arrest, more p53 knockdown/mutant cells could re-enter the cell cycle, resulting in colony formation and cell survival. Our findings assign functional p53 as a determining factor for the observed radiosensitizing effect of volasertib in combination with radiotherapy for the treatment of NSCLC. Full article
Show Figures

Graphical abstract

Open AccessArticle
FoxO3a as a Positive Prognostic Marker and a Therapeutic Target in Tamoxifen-Resistant Breast Cancer
Cancers 2019, 11(12), 1858; https://doi.org/10.3390/cancers11121858 - 25 Nov 2019
Cited by 6 | Viewed by 1429
Abstract
Background: Resistance to endocrine treatments is a major clinical challenge in the management of estrogen receptor positive breast cancers. Although multiple mechanisms leading to endocrine resistance have been proposed, the poor outcome of this subgroup of patients demands additional studies. Methods: FoxO3a involvement [...] Read more.
Background: Resistance to endocrine treatments is a major clinical challenge in the management of estrogen receptor positive breast cancers. Although multiple mechanisms leading to endocrine resistance have been proposed, the poor outcome of this subgroup of patients demands additional studies. Methods: FoxO3a involvement in the acquisition and reversion of tamoxifen resistance was assessed in vitro in three parental ER+ breast cancer cells, MCF-7, T47D and ZR-75-1, in the deriving Tamoxifen resistant models (TamR) and in Tet-inducible TamR/FoxO3a stable cell lines, by growth curves, PLA, siRNA, RT-PCR, Western blot, Immunofluorescence, Transmission Electron Microscopy, TUNEL, cell cycle, proteomics analyses and animal models. FoxO3a clinical relevance was validated in silico by Kaplan–Meier survival curves. Results: Here, we show that tamoxifen resistant breast cancer cells (TamR) express low FoxO3a levels. The hyperactive growth factors signaling, characterizing these cells, leads to FoxO3a hyper-phosphorylation and subsequent proteasomal degradation. FoxO3a re-expression by using TamR tetracycline inducible cells or by treating TamR with the anticonvulsant lamotrigine (LTG), restored the sensitivity to the antiestrogen and strongly reduced tumor mass in TamR-derived mouse xenografts. Proteomics data unveiled novel potential mediators of FoxO3a anti-proliferative and pro-apoptotic activity, while the Kaplan–Meier analysis showed that FoxO3a is predictive of a positive response to tamoxifen therapy in Luminal A breast cancer patients. Conclusions: Altogether, our data indicate that FoxO3a is a key target to be exploited in endocrine-resistant tumors. In this context, LTG, being able to induce FoxO3a, might represent a valid candidate in combination therapy to prevent resistance to tamoxifen in patients at risk. Full article
Show Figures

Figure 1

Open AccessReview
RAD52 Functions in Homologous Recombination and Its Importance on Genomic Integrity Maintenance and Cancer Therapy
Cancers 2019, 11(11), 1622; https://doi.org/10.3390/cancers11111622 - 23 Oct 2019
Cited by 15 | Viewed by 1197
Abstract
Genomes are continually subjected to DNA damage whether they are induced from intrinsic physiological processes or extrinsic agents. Double-stranded breaks (DSBs) are the most injurious type of DNA damage, being induced by ionizing radiation (IR) and cytotoxic agents used in cancer treatment. The [...] Read more.
Genomes are continually subjected to DNA damage whether they are induced from intrinsic physiological processes or extrinsic agents. Double-stranded breaks (DSBs) are the most injurious type of DNA damage, being induced by ionizing radiation (IR) and cytotoxic agents used in cancer treatment. The failure to repair DSBs can result in aberrant chromosomal abnormalities which lead to cancer development. An intricate network of DNA damage signaling pathways is usually activated to eliminate these damages and to restore genomic stability. These signaling pathways include the activation of cell cycle checkpoints, DNA repair mechanisms, and apoptosis induction, also known as DNA damage response (DDR)-mechanisms. Remarkably, the homologous recombination (HR) is the major DSBs repairing pathway, in which RAD52 gene has a crucial repairing role by promoting the annealing of complementary single-stranded DNA and by stimulating RAD51 recombinase activity. Evidence suggests that variations in RAD52 expression can influence HR activity and, subsequently, influence the predisposition and treatment efficacy of cancer. In this review, we present several reports in which the down or upregulation of RAD52 seems to be associated with different carcinogenic processes. In addition, we discuss RAD52 inhibition in DDR-defective cancers as a possible target to improve cancer therapy efficacy. Full article
Show Figures

Figure 1

Open AccessReview
Therapeutic Challenges for Cisplatin-Resistant Ovarian Germ Cell Tumors
Cancers 2019, 11(10), 1584; https://doi.org/10.3390/cancers11101584 - 17 Oct 2019
Cited by 6 | Viewed by 1065
Abstract
The majority of patients with advanced ovarian germ cell cancer are treated by cisplatin-based chemotherapy. Despite adequate first-line treatment, nearly one third of patients relapse and almost half develop cisplatin-resistant disease, which is often fatal. The treatment of cisplatin-resistant disease is challenging and [...] Read more.
The majority of patients with advanced ovarian germ cell cancer are treated by cisplatin-based chemotherapy. Despite adequate first-line treatment, nearly one third of patients relapse and almost half develop cisplatin-resistant disease, which is often fatal. The treatment of cisplatin-resistant disease is challenging and prognosis remains poor. There are limited data on the efficacy of specific chemotherapeutic regimens, high-dose chemotherapy with autologous progenitor cell support and targeted therapies. The inclusion of patients in clinical trials is strongly recommended, especially in clinical trials on the most frequent male germ cell tumors, to offer wider therapeutic opportunities. Here, we provide an overview of current and potential new treatment options including combination chemotherapy, high-dose chemotherapy and molecular targeted therapies, for patients with cisplatin-resistant ovarian germ cell tumors. Full article
Open AccessArticle
FOXC1 Regulation of miR-31-5p Confers Oxaliplatin Resistance by Targeting LATS2 in Colorectal Cancer
Cancers 2019, 11(10), 1576; https://doi.org/10.3390/cancers11101576 - 16 Oct 2019
Cited by 19 | Viewed by 1481
Abstract
Colorectal cancer (CRC) is the second leading cause of cancer-related illness worldwide and one of the most common malignancies. Therefore, colorectal cancer research and cases have gained increasing attention. Oxaliplatin (OXA) is currently used in first-line chemotherapy to treat stage III and stage [...] Read more.
Colorectal cancer (CRC) is the second leading cause of cancer-related illness worldwide and one of the most common malignancies. Therefore, colorectal cancer research and cases have gained increasing attention. Oxaliplatin (OXA) is currently used in first-line chemotherapy to treat stage III and stage IV metastatic CRC. However, patients undergoing chemotherapy often develop resistance to chemo drugs being used. Evidence has confirmed that microRNAs regulate downstream genes in cancer biology and thereby have roles related to tumor growth, proliferation, invasion, angiogenesis, and multi-drug resistance. The aim of our study is to establish whether miR-31-5p is an oncogene in human colorectal cancers that are resistant to OXA and further confirm its malignant phenotype-associated target molecule. From the results of miRNA microarray assay, we establish that miR-31-5p expression was upregulated in oxaliplatin-resistant (OR)-LoVo cells compared with parental LoVo cells. Moreover, through in vitro and in vivo experiments, we demonstrate that miR-31-5p and large tumor suppressor kinase 2 (LATS2) were inversely related and that miR-31-5p and Forkhead box C1 (FOXC1) were positively correlated in the same LoVo or OR-LoVo cells. Importantly, we reveal a novel drug-resistance mechanism in which the transcription factor FOXC1 binds to the miR-31 promoter to increase the expression of miR31-5p and regulate LATS2 expression, resulting in cancer cell resistance to OXA. These results suggest that miR-31-5p may be a novel biomarker involved in drug resistance progression in CRC patients. Moreover, the FOXC1/miR31-5p/LATS2 drug-resistance mechanism provides new treatment strategies for CRC in clinical trials. Full article
Show Figures

Figure 1

Open AccessArticle
Simultaneous Inhibition of BCR-ABL1 Tyrosine Kinase and PAK1/2 Serine/Threonine Kinase Exerts Synergistic Effect against Chronic Myeloid Leukemia Cells
Cancers 2019, 11(10), 1544; https://doi.org/10.3390/cancers11101544 - 12 Oct 2019
Cited by 7 | Viewed by 1093
Abstract
Tyrosine kinase inhibitors (TKIs) revolutionized the treatment of chronic myeloid leukemia in the chronic phase (CML-CP). However, it is unlikely that they can completely “cure” the disease. This might be because some subpopulations of CML-CP cells such as stem and progenitor cells are [...] Read more.
Tyrosine kinase inhibitors (TKIs) revolutionized the treatment of chronic myeloid leukemia in the chronic phase (CML-CP). However, it is unlikely that they can completely “cure” the disease. This might be because some subpopulations of CML-CP cells such as stem and progenitor cells are resistant to chemotherapy, even to the new generation of TKIs. Therefore, it is important to look for new methods of treatment to improve therapeutic outcomes. Previously, we have shown that class I p21-activated serine/threonine kinases (PAKs) remained active in TKI-naive and TKI-treated CML-CP leukemia stem and early progenitor cells. In this study, we aimed to determine if simultaneous inhibition of BCR-ABL1 oncogenic tyrosine kinase and PAK1/2 serine/threonine kinase exert better anti-CML effect than that of individual treatments. PAK1 was inhibited by small-molecule inhibitor IPA-3 (p21-activated kinase inhibitor III), PAK2 was downregulated by specific short hairpin RNA (shRNA), and BCR-ABL1 tyrosine kinase was inhibited by imatinib (IM). The studies were conducted by using (i) primary CML-CP stem/early progenitor cells and normal hematopoietic counterparts isolated from the bone marrow of newly diagnosed patients with CML-CP and from healthy donors, respectively, (ii) CML-blast phase cell lines (K562 and KCL-22), and (iii) from BCR-ABL1-transformed 32Dcl3 cell line. Herein, we show that inhibition of the activity of PAK1 and/or PAK2 enhanced the effect of IM against CML cells without affecting the normal cells. We observed that the combined use of IM with IPA-3 increased the inhibition of growth and apoptosis of leukemia cells. To evaluate the type of interaction between the two drugs, we performed median effect analysis. According to our results, the type and strength of drug interaction depend on the concentration of the drugs tested. Generally, combination of IM with IPA-3 at the 50% of the cell kill level (EC50) generated synergistic effect. Based on our results, we hypothesize that IM, a BCR-ABL1 tyrosine kinase inhibitor, combined with a PAK1/2 inhibitor facilitates eradication of CML-CP cells. Full article
Show Figures

Figure 1

Open AccessArticle
Endoplasmic Reticulum Stress Signaling as a Therapeutic Target in Malignant Pleural Mesothelioma
Cancers 2019, 11(10), 1502; https://doi.org/10.3390/cancers11101502 - 08 Oct 2019
Cited by 12 | Viewed by 1227
Abstract
Malignant pleural mesothelioma (MPM) is a lethal cancer with limited treatment options. No targeted therapy has emerged yet. Here, we performed an integrated molecular characterization of patient tumors in the TCGA dataset, and discovered that endoplasmic reticulum (ER) stress and the adaptive unfolded [...] Read more.
Malignant pleural mesothelioma (MPM) is a lethal cancer with limited treatment options. No targeted therapy has emerged yet. Here, we performed an integrated molecular characterization of patient tumors in the TCGA dataset, and discovered that endoplasmic reticulum (ER) stress and the adaptive unfolded protein response (UPR) signaling are characteristically deregulated in MPM. Consequently, pharmacological perturbation of ER stress/UPR axis by HA15, an agent that induces persistent proteotoxic stress in the ER, selectively suppresses the viability of MPM cells including those refractory to standard chemotherapy. Mechanically, HA15 augments the already high basal level of ER stress in MPM cells, embarks pro-apoptotic malfunctional UPR and autophagy, which eventually induces cell death in MPM. Importantly, HA15 exerts anti-MPM effectiveness in a mouse model of patient-derived xenografts (PDX) without eliciting overt toxicity when compared to chemotherapy. Our results revealed that programs orchestrating ER stress/UPR signaling represent therapeutic vulnerabilities in MPM and validate HA15 as a promising agent to treat patients with MPM, naïve or resistant to chemotherapy. Full article
Show Figures

Figure 1

Open AccessArticle
Potent Activity of Composite Cyclin Dependent Kinase Inhibition against Hepatocellular Carcinoma
Cancers 2019, 11(10), 1433; https://doi.org/10.3390/cancers11101433 - 26 Sep 2019
Cited by 7 | Viewed by 1228
Abstract
Alterations in cell cycle regulators are common in hepatocellular carcinoma (HCC). We tested the efficacy of composite inhibition of CDKs 1, 2, 5, and 9 through dinaciclib on HCC. In vitro, dinaciclib exhibited potent antiproliferative activities in HCC cell lines regardless of Rb [...] Read more.
Alterations in cell cycle regulators are common in hepatocellular carcinoma (HCC). We tested the efficacy of composite inhibition of CDKs 1, 2, 5, and 9 through dinaciclib on HCC. In vitro, dinaciclib exhibited potent antiproliferative activities in HCC cell lines regardless of Rb or c-myc expression levels. Dinaciclib significantly downregulated the phosphorylation of Rb (target of CDKs 1 and 2), ataxia telangiectasia mutated kinase (target of CDK5), and RNA polymerase II (target of CDK9) in the HCC cells. In xenograft studies, mice receiving dinaciclib tolerated the treatment well without significant body weight changes and exhibited a significantly slower tumor growth rate than the mice receiving vehicles. RNA interference (RNAi) of CDKs 1 and 9 was more effective in inhibiting the cell proliferation of HCC cells than RNAi of CDKs 2 and 5. Overexpression of CDK9 significantly reduced the efficacy of dinaciclib in HCC cells, but overexpression of CDK1 did not. In conclusion, composite inhibition of CDKs 1, 2, 5, and 9 through dinaciclib exhibited potent in vitro and in vivo activity against HCC. CDK9 inhibition might be the crucial mechanism. Full article
Show Figures

Figure 1

Open AccessArticle
Proton Beam Therapy Combined with Intra-Arterial Infusion Chemotherapy for Stage IV Adenoid Cystic Carcinoma of the Base of the Tongue
Cancers 2019, 11(10), 1413; https://doi.org/10.3390/cancers11101413 - 22 Sep 2019
Cited by 2 | Viewed by 1561
Abstract
Adenoid cystic carcinoma (ACC) is a very rare epithelial tumor of the salivary glands. Surgical resection is considered to be a standard therapy. However, the optimal treatment strategy for managing advanced cases has not yet been established. This study evaluated the efficacy and [...] Read more.
Adenoid cystic carcinoma (ACC) is a very rare epithelial tumor of the salivary glands. Surgical resection is considered to be a standard therapy. However, the optimal treatment strategy for managing advanced cases has not yet been established. This study evaluated the efficacy and toxicity of proton beam therapy (PBT) combined with selective intra-arterial infusion chemotherapy (IAIC) using weekly cisplatin for locally advanced ACC of the base of the tongue. Between March 2009 and February 2018, 15 patients were treated. The median follow-up duration was 56 (range: 15–116) months. The 5-year local control and overall survival rates were 89% and 76%, respectively. With regard to late toxicities, grade 2 osteoradionecrosis was found in one patient and grade 5 pharyngeal necrosis was observed in one patient. Considering most cases were significantly advanced and inoperable, this therapy was effective in controlling the primary tumor, preserving function and maintaining the quality of life. Although improvements are needed to reduce adverse events, PBT in combination with IAIC can be a treatment option for locally advanced ACC of the base of the tongue. Full article
Show Figures

Figure 1

Open AccessArticle
Repurposing Penfluridol in Combination with Temozolomide for the Treatment of Glioblastoma
Cancers 2019, 11(9), 1310; https://doi.org/10.3390/cancers11091310 - 05 Sep 2019
Cited by 6 | Viewed by 1514
Abstract
Despite the presence of aggressive treatment strategies, glioblastoma remains intractable, warranting a novel therapeutic modality. An oral antipsychotic agent, penflurido (PFD), used for schizophrenia treatment, has shown an antitumor effect on various types of cancer cells. As glioma sphere-forming cells (GSCs) are known [...] Read more.
Despite the presence of aggressive treatment strategies, glioblastoma remains intractable, warranting a novel therapeutic modality. An oral antipsychotic agent, penflurido (PFD), used for schizophrenia treatment, has shown an antitumor effect on various types of cancer cells. As glioma sphere-forming cells (GSCs) are known to mediate drug resistance in glioblastoma, and considering that antipsychotics can easily penetrate the blood-brain barrier, we investigated the antitumor effect of PFD on patient-derived GSCs. Using five GSCs, we found that PFD exerts an antiproliferative effect in a time- and dose-dependent manner. At IC50, spheroid size and second-generation spheroid formation were significantly suppressed. Stemness factors, SOX2 and OCT4, were decreased. PFD treatment reduced cancer cell migration and invasion by reducing the Integrin α6 and uPAR levels and suppression of the expression of epithelial-to-mesenchymal transition (EMT) factors, vimentin and Zeb1. GLI1 was found to be involved in PFD-induced EMT inhibition. Furthermore, combinatorial treatment of PFD with temozolomide (TMZ) significantly suppressed tumor growth and prolonged survival in vivo. Immunostaining revealed decreased expression of GLI1, SOX2, and vimentin in the PFD treatment group but not in the TMZ-only treatment group. Therefore, PFD can be effectively repurposed for the treatment of glioblastoma by combining it with TMZ. Full article
Show Figures

Figure 1

Open AccessReview
The PI3K/AKT/mTOR and CDK4/6 Pathways in Endocrine Resistant HR+/HER2− Metastatic Breast Cancer: Biological Mechanisms and New Treatments
Cancers 2019, 11(9), 1242; https://doi.org/10.3390/cancers11091242 - 24 Aug 2019
Cited by 22 | Viewed by 3252
Abstract
Endocrine-based treatments are the normal standard-of-care in women with hormone receptor-positive/Human Epidermal growth factor Receptor 2-negative metastatic breast cancer. Despite the well-known efficacy of these drugs as first-line therapies, about 50% of women develop endocrine resistance and disease progression. The treatment of these [...] Read more.
Endocrine-based treatments are the normal standard-of-care in women with hormone receptor-positive/Human Epidermal growth factor Receptor 2-negative metastatic breast cancer. Despite the well-known efficacy of these drugs as first-line therapies, about 50% of women develop endocrine resistance and disease progression. The treatment of these patients has represented one of the most important research fields in the last few years, with several multicenter phase II/III trials published or still ongoing. Novel therapies, such as cyclin-dependent kinase (CDK)4/6 and phosphatidylinositol 3-kinase (PI3K)/protein kinase B (AKT)/mammalian target of rapamycin (mTOR) inhibitors, have significantly changed the prognosis of patients progressing to a previous endocrine treatment, allowing a great benefit in terms of progression-free survival and, in some cases, of overall survival. However, identifying response predictors is essential for the rational use of these drugs to avoid unnecessary toxicity and costs, and to ensure the optimal therapeutic sequence is used. In this review, we analyze the PI3K/AKT/mTOR and CDK4/6 pathways and their roles in endocrine resistant metastatic breast cancer. We then focus on the new treatments developed and the roles of these drugs in overcoming endocrine resistance, describing the latest clinical trials that led to the approval of the drugs in clinical practice. Full article
Show Figures

Figure 1

Open AccessArticle
TIMP-1-Mediated Chemoresistance via Induction of IL-6 in NSCLC
Cancers 2019, 11(8), 1184; https://doi.org/10.3390/cancers11081184 - 15 Aug 2019
Cited by 5 | Viewed by 2162
Abstract
Elevated tissue inhibitor of metalloproteinase-1 (TIMP-1) is a negative prognosticator in non-small cell lung carcinoma NSCLC patients. This study sought to identify mechanisms whereby TIMP-1 impacts anticancer therapy. Using NSCLC cells and their TIMP-1 knockdown clones, we examined the chemoresistance against two chemotherapeutic [...] Read more.
Elevated tissue inhibitor of metalloproteinase-1 (TIMP-1) is a negative prognosticator in non-small cell lung carcinoma NSCLC patients. This study sought to identify mechanisms whereby TIMP-1 impacts anticancer therapy. Using NSCLC cells and their TIMP-1 knockdown clones, we examined the chemoresistance against two chemotherapeutic agents, Gemcitabine and Cisplatin, as identified by increased apoptosis in the knockdown clones. A bead-based cytokine screening assay identified interleukin-6 (IL-6) as a key factor in chemoresistance. Exogenous human recombinant rhTIMP-1 or rhIL-6 resulted in reduced apoptosis. IL-6 expression was closely correlated with TIMP-1 kinetics and was upregulated by the addition of exogenous TIMP-1 while TIMP-1 neutralizing antibodies delayed IL-6 elevation. IL-6 production was regulated by TIMP-1, exerting its effect via activation of downstream signal transducer and activator of transcription 3 (STAT3) signaling. Both molecules and their documented transcription factors were upregulated and activated in chemoresistant NSCLC cells, confirming the roles of TIMP-1 and IL-6 in chemoresistance. To examine the role of these genes in patients, survival data from lung adenocarcinoma (LUAD) patients was curated from the cancer genome atlas (TCGA) database. Kaplan-Meier analysis found that individuals expressing low TIMP-1 and IL-6 have a higher survival rate and that the two-gene signature was more significant than the single-gene status. We define for the first time, a regulatory relationship between TIMP-1 and IL-6 in NSCLCs, suggesting that the TIMP-1/IL6 axis may be a valuable prognostic biomarker. Therapeutic interventions directed at this dual target may improve overall prognosis while negatively affecting the development of chemoresistance in NSCLC. Full article
Show Figures

Figure 1

Open AccessReview
The Tumor Microenvironment in Colorectal Cancer Therapy
Cancers 2019, 11(8), 1172; https://doi.org/10.3390/cancers11081172 - 14 Aug 2019
Cited by 23 | Viewed by 2137
Abstract
The current standard-of-care for metastatic colorectal cancer (mCRC) includes chemotherapy and anti-angiogenic or anti-epidermal growth factor receptor (EGFR) monoclonal antibodies, even though the addition of anti-angiogenic agents to backbone chemotherapy provides little benefit for overall survival. Since the approval of anti-angiogenic monoclonal antibodies [...] Read more.
The current standard-of-care for metastatic colorectal cancer (mCRC) includes chemotherapy and anti-angiogenic or anti-epidermal growth factor receptor (EGFR) monoclonal antibodies, even though the addition of anti-angiogenic agents to backbone chemotherapy provides little benefit for overall survival. Since the approval of anti-angiogenic monoclonal antibodies bevacizumab and aflibercept, for the management of mCRC over a decade ago, extensive efforts have been devoted to discovering predictive factors of the anti-angiogenic response, unsuccessfully. Recent evidence has suggested a potential correlation between angiogenesis and immune phenotypes associated with colorectal cancer. Here, we review evidence of interactions between tumor angiogenesis, the immune microenvironment, and metabolic reprogramming. More specifically, we will highlight such interactions as inferred from our novel immune-metabolic (IM) signature, which groups mCRC into three distinct clusters, namely inflamed-stromal-dependent (IM Cluster 1), inflamed-non stromal-dependent (IM Cluster 2), and non-inflamed or cold (IM Cluster 3), and discuss the merits of the IM classification as a guide to new immune-metabolic combinatorial therapeutic strategies in mCRC. Full article
Show Figures

Figure 1

Open AccessArticle
Untargeted Assessment of Tumor Fractions in Plasma for Monitoring and Prognostication from Metastatic Breast Cancer Patients Undergoing Systemic Treatment
Cancers 2019, 11(8), 1171; https://doi.org/10.3390/cancers11081171 - 14 Aug 2019
Cited by 7 | Viewed by 1925
Abstract
The aim of this study was to assess the prognostic and predictive value of an untargeted assessment of tumor fractions in the plasma of metastatic breast cancer patients and to compare circulating tumor DNA (ctDNA) with circulating tumor cells (CTC) and conventional tumor [...] Read more.
The aim of this study was to assess the prognostic and predictive value of an untargeted assessment of tumor fractions in the plasma of metastatic breast cancer patients and to compare circulating tumor DNA (ctDNA) with circulating tumor cells (CTC) and conventional tumor markers. In metastatic breast cancer patients (n = 29), tumor fractions in plasma were assessed using the untargeted mFAST-SeqS method from 127 serial blood samples. Resulting z-scores for the ctDNA were compared to tumor fractions established with the recently published ichorCNA algorithm and associated with the clinical outcome. We observed a close correlation between mFAST-SeqS z-scores and ichorCNA ctDNA quantifications. Patients with mFAST-SeqS z-scores above three (34.5%) showed significantly worse overall survival (p = 0.014) and progression-free survival (p = 0.018) compared to patients with lower values. Elevated z-score values were clearly associated with radiologically proven progression. The baseline CTC count, carcinoembryonic antigen (CEA), and cancer antigen (CA)15-5 had no prognostic impact on the outcome of patients in the analyzed cohort. This proof of principle study demonstrates the prognostic impact of ctDNA levels detected with mFAST-SeqS as a very fast and cost-effective means to assess the ctDNA fraction without prior knowledge of the genetic landscape of the tumor. Furthermore, mFAST-SeqS-based ctDNA levels provided an early means of measuring treatment response. Full article
Show Figures

Figure 1

Open AccessArticle
SLMP53-2 Restores Wild-Type-Like Function to Mutant p53 through Hsp70: Promising Activity in Hepatocellular Carcinoma
Cancers 2019, 11(8), 1151; https://doi.org/10.3390/cancers11081151 - 10 Aug 2019
Cited by 9 | Viewed by 2329
Abstract
Half of human cancers harbor TP53 mutations that render p53 inactive as a tumor suppressor. In these cancers, reactivation of mutant p53 (mutp53) through restoration of wild-type-like function constitutes a valuable anticancer therapeutic strategy. In order to search for mutp53 reactivators, a small [...] Read more.
Half of human cancers harbor TP53 mutations that render p53 inactive as a tumor suppressor. In these cancers, reactivation of mutant p53 (mutp53) through restoration of wild-type-like function constitutes a valuable anticancer therapeutic strategy. In order to search for mutp53 reactivators, a small library of tryptophanol-derived oxazoloisoindolinones was synthesized and the potential of these compounds as mutp53 reactivators and anticancer agents was investigated in human tumor cells and xenograft mouse models. By analysis of their anti-proliferative effect on a panel of p53-null NCI-H1299 tumor cells ectopically expressing highly prevalent mutp53, the compound SLMP53-2 was selected based on its potential reactivation of multiple structural mutp53. In mutp53-Y220C-expressing hepatocellular carcinoma (HCC) cells, SLMP53-2-induced growth inhibition was mediated by cell cycle arrest, apoptosis, and endoplasmic reticulum stress response. In these cells, SLMP53-2 restored wild-type-like conformation and DNA-binding ability of mutp53-Y220C by enhancing its interaction with the heat shock protein 70 (Hsp70), leading to the reestablishment of p53 transcriptional activity. Additionally, SLMP53-2 displayed synergistic effect with sorafenib, the only approved therapy for advanced HCC. Notably, it exhibited potent antitumor activity in human HCC xenograft mouse models with a favorable toxicological profile. Collectively, SLMP53-2 is a new mutp53-targeting agent with promising antitumor activity, particularly against HCC. Full article
Show Figures

Graphical abstract