Advances in Steel and Composite Structures

A special issue of Buildings (ISSN 2075-5309). This special issue belongs to the section "Building Structures".

Deadline for manuscript submissions: 30 November 2025 | Viewed by 2893

Special Issue Editors


E-Mail Website
Guest Editor
Research Center for Wind Engineering and Engineering Vibration, Guangzhou University, Guangzhou 510006, China
Interests: high-strength steel structures; stainless steel structures; high-strength concrete-filled steel tube structures; recycled aggregate concrete-filled steel tube structures; offshore wind turbine structures

E-Mail Website
Guest Editor
Department of Civil and Natural Resources Engineering, University of Canterbury, Christchurch 8041, New Zealand
Interests: high-performance steel structures; AI-based structural analysis and design; seismic performance of steel structures; 3D printing steel structures; modular steel structures
College of Civil and Transportation Engineering, Hohai University, Nanjing 210024, China
Interests: high-performance steel; structural stability; fire design; laboratory testing; numerical modelling
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

In recent decades, steel and steel–concrete composite structures advanced significantly, driven by their superior mechanical performance, convenient construction, low resource consumption and economic benefits. Recent advancements in materials and construction technologies have further accelerated their development, expanding their applications to high-rise buildings, long-span structures and offshore engineering projects. However, it is unclear whether these newly emerged steel and composite materials and technologies fulfil the requirements of structures in practical scenarios.

This Special Issue, entitled “Advances in Steel and Composite Structures”, aims to provide selected manuscripts that present recent studies in the theory, design, test, numerical simulation and maintenance of steel and steel–concrete composite structures around the world. The scope of this Special Issue includes, but is not limited to, the following topics:

  • Steel/steel–concrete composite structures with high-performance materials
  • Novel types of steel structures
  • Novel types of steel–concrete composite structures
  • Experimental study of steel/steel–concrete composite structures
  • Numerical study of steel/steel–concrete composite structures
  • Design of steel/steel–concrete composite structures
  • Innovation in structural analysis using artificial intelligence (AI)
  • Construction technology of steel/steel–concrete composite structures
  • Life cycle performance of steel/steel–concrete composite structures

Dr. Yukai Zhong
Dr. Ke Jiang
Dr. Zhe Xing
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Buildings is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2600 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • steel structures
  • steel-concrete composite structures
  • high-performance materials
  • experimental study
  • numerical simulation
  • life-cycle design artificial intelligence

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • e-Book format: Special Issues with more than 10 articles can be published as dedicated e-books, ensuring wide and rapid dissemination.

Further information on MDPI's Special Issue policies can be found here.

Published Papers (4 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

20 pages, 11547 KiB  
Article
Dynamic Characteristics Analysis of Three-Layer Steel–Concrete Composite Beams
by Longbiao Yan, Long Cao, Yikuan He, Xu Han, Mingsheng Cao, Bingchuan Yan, Yachen You and Benyuan Li
Buildings 2025, 15(8), 1347; https://doi.org/10.3390/buildings15081347 - 17 Apr 2025
Viewed by 171
Abstract
The dynamic behavior of three-layer composite beams, consisting of concrete slabs and steel beams, is influenced by the structural configuration of each layer as well as the shear connectors. The interlayer shear stiffness in three-layer composite beams governs their global dynamic behavior, while [...] Read more.
The dynamic behavior of three-layer composite beams, consisting of concrete slabs and steel beams, is influenced by the structural configuration of each layer as well as the shear connectors. The interlayer shear stiffness in three-layer composite beams governs their global dynamic behavior, while interlayer slippage-induced localized vibration effects represent a key limiting factor in practical applications. Based on the dynamic test results of steel–concrete double-layer composite beams, the feasibility of a finite element solid model for composite beams, which accounts for interlayer shear connectors and beam body characteristics, has been validated. Utilizing identical modeling parameters, an analytical model for the inherent vibration characteristics of three-layer steel–concrete composite beams has been developed. This study encompasses two types of composite beams: concrete–steel–concrete (CSC) and concrete–concrete–steel (CCS). Numerical simulations and theoretical analysis systematically investigated the effects of interface shear connector arrangements and structural geometric parameters on dynamic performance. Research indicates that the natural frequency of steel–concrete three-layer composite beams exhibits a distinct two-stage increasing trend with the enhancement in interlayer shear stiffness. For CSC-type simply supported composite beams, the fundamental vertical vibration frequency increases by 37.82% when achieving full shear connection at both interfaces compared to the unconnected state, while two-equal-span continuous beams show a 38.06% improvement. However, significant differences remain between the fully shear-connected state and theoretical rigid-bonding condition, with frequency discrepancies of 24.69% for simply supported beams and 24.07% for continuous beams. Notably, CCS-type simply supported beams display a 12.07% frequency increase with full concrete-to-concrete connection, exceeding even the theoretical rigid-bonding frequency value. Longitudinal connector arrangement non-uniformity significantly impacts dynamic characteristics, while the transverse arrangement has minimal influence. Among structural parameters, steel flange plate thickness has the most significant effect, followed by concrete slab width and thickness, with steel web thickness having the least impact. Based on the observation that the first-order vertical vibration frequency of three-layer composite beams exhibits a two-stage decreasing trend with an increase in the span-to-depth ratio, it is recommended that the span-to-depth ratio of three-layer steel–concrete composite beams should not be less than 10. Full article
(This article belongs to the Special Issue Advances in Steel and Composite Structures)
Show Figures

Figure 1

24 pages, 8596 KiB  
Article
Stress Concentration Factors of CHS-to-CFRHS Y-Joints Under Axial Tension Loading
by Yisheng Fu and Kuan Diao
Buildings 2025, 15(3), 331; https://doi.org/10.3390/buildings15030331 - 22 Jan 2025
Viewed by 643
Abstract
A CHS-to-CFRHS Y-joint that consists of a circular hollow section (CHS) brace and a concrete-filled rectangular hollow section (CFRHS) chord by welding has a simple and smooth weld profile that saves time and cost for the fabrication of CHS-to-CFRHS Y-joints and leads to [...] Read more.
A CHS-to-CFRHS Y-joint that consists of a circular hollow section (CHS) brace and a concrete-filled rectangular hollow section (CFRHS) chord by welding has a simple and smooth weld profile that saves time and cost for the fabrication of CHS-to-CFRHS Y-joints and leads to a superior fatigue performance, compared with other welded tubular joints. This investigation presented an analysis of the stress concentration factors (SCFs) of CHS-to-CFRHS Y-joints subjected to axial tension loading of the brace. First, a finite element (FE) modelling method, which was validated with the experimental results cited in the reference, was utilised to establish the FE models of CHS-to-CFRHS Y-joints. Then, a parametric analysis was conducted to investigate the influences of the significant non-dimensional geometric parameters on the SCFs of CHS-to-CFRHS Y-joints. It is found that the intersection angle of the brace and chord has an important influence on the magnitudes of the SCF values. An increase in the intersection angle of the brace and chord will increase the values of the SCFs at the 60° location and saddle. The values of the SCFs at the 60° location and saddle reach the maximum value when the intersection angle of the brace and chord reaches 90°. Furthermore, on the basis of the large database of the SCF results, empirical design equations were established to calculate the SCFs at the crown toe, 60° location and saddle via multiple regression analysis. A safety factor was applied to the empirical design equations to ensure safe and reliable results of SCF calculations for the fatigue design of CHS-to-CFRHS Y-joints in a composite truss structure. Ultimately, a comparative analysis of SCFs was conducted with the FE models of welded tubular joints with rectangular hollow section (RHS) chords and CFRHS chords. The results reveal that infilling concrete in the chord leads to a reduction in SCFs along the weld profile of more than 11% on average, and the peak SCF decreases by more than 15%. Full article
(This article belongs to the Special Issue Advances in Steel and Composite Structures)
Show Figures

Figure 1

20 pages, 6378 KiB  
Article
Seismic Response of Prestressed Self-Centering Moment-Resisting Frames
by Xueyuan Yan, Shen Shi, Huimin Mao and Zhongnan Lin
Buildings 2024, 14(12), 3811; https://doi.org/10.3390/buildings14123811 - 28 Nov 2024
Viewed by 691
Abstract
This paper aims to examine the seismic response of prestressed self-centering moment-resisting frames (PSC-MRFs) based on concrete-filled double steel tubular (CFDST) columns and RC beams. The beam of this novel connection is divided into two parts, connected by bolts and tendons, and the [...] Read more.
This paper aims to examine the seismic response of prestressed self-centering moment-resisting frames (PSC-MRFs) based on concrete-filled double steel tubular (CFDST) columns and RC beams. The beam of this novel connection is divided into two parts, connected by bolts and tendons, and the beam includes a gap opening feature, which could be regarded as a normal single beam in the field. Cyclic loading analysis was performed on one-story frames with different initial parameters arranged in adjacent bays. Nonlinear dynamic analysis was conducted on a six-story frame under two seismic hazard levels. The cyclic loading analysis showed favorable self-centering performance of the frame even when the hysteretic energy dissipation ratio reached 0.808. Seismic analysis results showed that compared with the in situ reinforced concrete frame, PSC-MRFs generally had similar maximum inter-story drifts under fortification earthquakes, but the residual inter-story drifts were reduced by 33%; under rare earthquakes, the maximum inter-story drifts and residual inter-story drifts of PSC-MRFs were reduced by 22% and more than 90%, respectively. In the adjacent bays on the same story of PSC-MRFs, connections with smaller imminent moments of gap opening opened earlier under earthquake, and the maximum opening angle was larger. The general seismic performance and self-centering of PSC-MRFs was significantly more advantageous than that of in situ reinforced concrete frames. Full article
(This article belongs to the Special Issue Advances in Steel and Composite Structures)
Show Figures

Figure 1

19 pages, 6076 KiB  
Article
Buckling Behaviour of Q355 Angles with Simulated Local Damages at Bolted Connections
by Cheng Xu, Hui-Qiang Yan and Shao-Bo Kang
Buildings 2024, 14(11), 3411; https://doi.org/10.3390/buildings14113411 - 27 Oct 2024
Viewed by 880
Abstract
Transmission towers in service are highly susceptible to corrosion caused by environmental conditions. It is crucial to assess the residual load capacity of corroded angles in transmission towers. In this study, corrosion at the connection of angels was simulated by local damage using [...] Read more.
Transmission towers in service are highly susceptible to corrosion caused by environmental conditions. It is crucial to assess the residual load capacity of corroded angles in transmission towers. In this study, corrosion at the connection of angels was simulated by local damage using a mechanical cutting method, and compression tests and numerical simulations were performed to investigate the load capacity of corroded angles. A total of 24 angles were designed and tested in the experiments, and the parameters considered included the location and thickness of damage and slenderness. The local damage was designed on the loaded or non-loaded legs, with slendernesses of 80 and 140, and a thickness of damage of 1 mm and 2 mm. The residual load capacity, failure modes, and strain of the angles were analysed based on experimental results. Furthermore, corrosion was simulated by reducing the local thickness of angles using ABAQUS. The accuracy of numerical models was verified after comparing the numerical results with experimental data. Based on the verified model, parameter analysis was conducted, in which the slendernesses was extended to 100 and 120, and the local damage thickness was also set to be 0.5 mm and 1.5 mm to quantitatively study the influence on the residual load capacity. The tests results showed that with the damage depth at the ends of the angle increased, and the load capacity of the angle decreased by up to 6.7%. Finally, a design equation for calculating the residual load capacity of corroded angles was proposed using the numerical results. By comparing the design equation, experimental results, and load capacity calculated per existing standards, it was found that the load-bearing capacity of corroded angles can be accurately predicted by the equation. Full article
(This article belongs to the Special Issue Advances in Steel and Composite Structures)
Show Figures

Figure 1

Back to TopTop