Disaster Prevention and Resilient Structures in Engineering Construction

A special issue of Buildings (ISSN 2075-5309). This special issue belongs to the section "Building Structures".

Deadline for manuscript submissions: 31 January 2026 | Viewed by 6015

Special Issue Editors


E-Mail Website
Guest Editor
School of Civil Engineering and Architecture, Northeast Electric Power University, Jilin 132012, China
Interests: ultra-high-performance concrete; concrete durability; precast concrete structure; earthquake engineering; seismic design
Special Issues, Collections and Topics in MDPI journals

E-Mail
Guest Editor
School of Civil Engineering, Harbin Institute of Technology, Harbin 150090, China
Interests: engineering construction and building technology; materials science; physics; computer science

Special Issue Information

Dear Colleagues,

In recent years, frequent natural disasters and accidental hazards worldwide have posed serious challenges to modern engineering construction. Throughout their entire life cycle, engineering structures such as high-rise buildings, residential clusters, and transmission tower line systems are exposed to individual or concurrent environmental threats, including earthquakes, strong winds, and rainfall. In this context, the development of infrastructure disaster prevention technologies with multi-hazard resistance capabilities and the establishment of resilient structural systems with rapid post-disaster recovery are critical to addressing the multiple disaster risks posed by climate change. These advancements hold significant implications for structural disaster prevention and mitigation as well as risk and crisis management.

This Special Issue focuses on disaster prevention and resilient structures in engineering construction, emphasizing, but not limited to, the following research directions: multi-hazard effects on engineering structures, safety and disaster prevention in power infrastructure, and structural resilience. We cordially welcome submissions on theoretical innovations, numerical simulations, experimental studies, and engineering applications that advance academic progress in structural engineering.

Please do not hesitate to contact us with any questions that you may have about this Special Issue.

Dr. Dehong Wang
Dr. Wei Chang
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 250 words) can be sent to the Editorial Office for assessment.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Buildings is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2600 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • multi-hazard effects
  • extreme climate
  • safety and disaster prevention
  • structural resilience
  • extreme loads
  • seismic performance
  • foundation engineering
  • high-performance materials

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • Reprint: MDPI Books provides the opportunity to republish successful Special Issues in book format, both online and in print.

Further information on MDPI's Special Issue policies can be found here.

Published Papers (9 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

Jump to: Review

20 pages, 4061 KB  
Article
A Moment-Rotation Model of Semi-Rigid Steel Structure Joints with Bolted Connection
by Mengxin Kang, Shifeng Hou, Juyang Cai and Liang Zhang
Buildings 2026, 16(1), 182; https://doi.org/10.3390/buildings16010182 - 1 Jan 2026
Viewed by 173
Abstract
ANSYS software was used to analyze the moment-rotation relationship of semi-rigid steel structure joints with bolted connection. A parametric study was conducted to examine the influence of eight key variables—including bolt number, bolt grade, angle steel grade, bolt diameter, angle steel thickness, angle [...] Read more.
ANSYS software was used to analyze the moment-rotation relationship of semi-rigid steel structure joints with bolted connection. A parametric study was conducted to examine the influence of eight key variables—including bolt number, bolt grade, angle steel grade, bolt diameter, angle steel thickness, angle steel width, preload magnitude, and friction coefficient—on the bending behavior of semi-rigid joints with bolted connection. Parametric analysis reveals that the initial rotational stiffness is most significantly influenced by the bolt diameter, the width and thickness of the angle steel, the bolt preload, the coefficient of friction, and the bolt number. The stiffness exhibited an average increase of 50.6% for every 4 mm increment in bolt diameter from 12 mm to 24 mm. Expanding the angle steel width from 50 mm to 75 mm resulted in a substantial 88.5% average increase in stiffness, while a further width increase from 75 mm to 110 mm led to a smaller average increase of 17.4% per 17.5 mm. Similarly, the stiffness rose by an average of 33.8% for every 2 mm increase in the thickness of the angle steel within the 4 mm to 10 mm range. A 25% increase in bolt preload correlated with a modest average stiffness gain of 2.7%. The rate of stiffness improvement diminished with increasing friction coefficient. In contrast, the initial rotational stiffness exhibited a relationship that is approximately linear with respect to the quantity of bolts. Regarding the ultimate bending moment, the key influencing factors were identified as bolt diameter, preload, coefficient of friction, and number of bolts. The ultimate moment demonstrated a non-monotonic relationship with bolt diameter, characterized by an initial increase, followed by a decrease, and then a sharp subsequent rise. Linear enhancements in the ultimate moment were observed with increases in both bolt preload and coefficient of friction. Furthermore, the ultimate bending moment showed a gradual increase with the number of bolts. Based on the results, a bending moment-rotation curve model of joints with bolted connection is established, and the expression of each parameter in the model is calculated. This model can be applied to simulation of the bending performance of semi-rigid joints with bolted connection. Full article
Show Figures

Figure 1

40 pages, 10864 KB  
Article
Surrogate-Based Resilience Assessment of SMRF Buildings Under Sequential Earthquake–Flood Hazards
by Delbaz Samadian and Imrose B. Muhit
Buildings 2026, 16(1), 48; https://doi.org/10.3390/buildings16010048 - 22 Dec 2025
Viewed by 384
Abstract
This study presents a framework for assessing the resilience of steel special moment-resisting frame (SMRF) buildings under sequential earthquake–flood hazards. Surrogate models, including a stacked attention-based LSTM network (Stack-AttenLSTM) and CatBoost, are developed to predict key engineering demand parameters (EDPs), particularly maximum inter-storey [...] Read more.
This study presents a framework for assessing the resilience of steel special moment-resisting frame (SMRF) buildings under sequential earthquake–flood hazards. Surrogate models, including a stacked attention-based LSTM network (Stack-AttenLSTM) and CatBoost, are developed to predict key engineering demand parameters (EDPs), particularly maximum inter-storey drift ratios (MIDRs), avoiding the need for computationally expensive nonlinear time history analysis (NLTHA). The predicted EDPs are integrated with the FEMA P-58 methodology to estimate repair costs and durations, while the REDi framework is used to capture recovery delays and functionality loss. A two-storey code-compliant SMRF building is evaluated under a design-basis earthquake (DBE) with and without a subsequent 4.0 m flood. Results show that the combined hazard nearly doubles repair costs (from 0.33 to 0.77 of replacement value), increases downtime from 194 to over 411 days, and reduces the resilience index (Ri) from 0.873 to 0.265. These findings highlight the severe impacts of cascading multi-hazard events and the need to extend performance-based design toward resilience-focused strategies. The proposed surrogate-based framework provides a practical tool for evaluating multi-hazard risks and guiding the design of more resilient structures. Full article
Show Figures

Figure 1

23 pages, 8655 KB  
Article
Analysis of the Influence of Partially Restrained Reinforced Angle Steel Members (PRR-ASM) on the Wind-Resistant Performance of Transmission Tower-Line System: Test and Numerical Simulation Verification
by Tianyuan Cai, Dehui Zhao, Baohai Yang, Ning Zhang, Kangning Guo and He Chen
Buildings 2025, 15(24), 4520; https://doi.org/10.3390/buildings15244520 - 14 Dec 2025
Viewed by 317
Abstract
The transmission tower-line system is subjected to long-term loads such as wind and ice, and the instability of the tower leg angle steel is one of the key factors leading to collapse. This paper proposes the partially restrained reinforced angle steel member (PRR-ASM), [...] Read more.
The transmission tower-line system is subjected to long-term loads such as wind and ice, and the instability of the tower leg angle steel is one of the key factors leading to collapse. This paper proposes the partially restrained reinforced angle steel member (PRR-ASM), a method used to enhance the bearing capacity of the tower leg angle steel. By combining tests and simulation analyses, the reinforcement mechanism and engineering applicability of PRR-ASM were studied. Comparative analysis was performed on the gap working conditions of PRR-ASM, and compression tests on constraint gaps (0/2/4 mm) were conducted. The bearing capacity of partially constrained specimens increased by 31%, and the yield displacement increased by 92.2%. Analysis of constraint segment length showed that length significantly affects bearing capacity, and better improvement in stability performance can be achieved with partial constraint. Based on the test and simulation results, constitutive and simplified models were established, and PRR-ASM was applied to vulnerable members of the tower-line system. A two towers and three lines coupled model was constructed to analyze the structural failure mechanism. The results show that under the most unfavorable wind direction, the ultimate wind speed after reinforcement increased from 25 m/s to 32 m/s, and the member safety factor increased from 1.6 to 3.4. Considering high reinforcement efficiency and low economic cost in engineering, the gap-free, partially constrained scheme is recommended for engineering practice. Full article
Show Figures

Figure 1

24 pages, 6004 KB  
Article
Influence of Backfill Soil on the Uplift Bearing Capacity of Prefabricated Foundations for Temporary Transition Towers
by Qingyu Meng, Hanyu Ning, Keqin Yan, Shufeng Long and Mengxin Kang
Buildings 2025, 15(24), 4403; https://doi.org/10.3390/buildings15244403 - 5 Dec 2025
Viewed by 291
Abstract
In response to the non-reusable nature and prolonged construction period of traditional foundations for temporary and transitional towers, this paper designs a fully reusable all-metal prefabricated foundation for 35 kV–110 kV transmission lines. The uplift bearing capacity of the fully metallic prefabricated foundation [...] Read more.
In response to the non-reusable nature and prolonged construction period of traditional foundations for temporary and transitional towers, this paper designs a fully reusable all-metal prefabricated foundation for 35 kV–110 kV transmission lines. The uplift bearing capacity of the fully metallic prefabricated foundation was investigated through a series of eight reduced-scale model tests (scale 1:3). Weathered sand and silty clay were selected as backfill materials, with relative density and foundation embedment depth as test variables. The load–displacement curves were plotted, and the ultimate uplift capacity was determined based on the load corresponding to the onset of a sharp transition in these curves. The test results demonstrated that the ultimate uplift capacity of foundations with weathered sand backfill was significantly superior to that of counterparts with silty clay under comparable conditions. Specifically, at an embedment depth of 1.2 m and high relative density, the ultimate load of the weathered sand backfill was 33.3% higher than that of the silty clay backfill. The ultimate uplift capacity increased markedly with higher relative density. When the degree of compaction increased from 0.7 to 0.9, the ultimate capacity of the weathered sand backfill increased by 100.0%, substantially exceeding the 30.4% increase observed for the silty clay backfill. Furthermore, the ultimate capacity exhibited greater sensitivity to the embedment depth in weathered sand. As the embedment depth increased from 0.5 m to 1.2 m, the ultimate capacity of the weathered sand backfill increased by 191%, far surpassing the 114% increase for the silty clay backfill. This study provides experimental evidence and theoretical references for the design and construction of assembled foundations for temporary tower structures. The conclusions of this study are based on model test conditions and require further verification through prototype tests and numerical simulation. Full article
Show Figures

Figure 1

28 pages, 3480 KB  
Article
Analysis on DDBD Method of Precast Frame with UHPC Composite Beams and HSC Columns
by Xiaolei Zhang, Kunyu Duan, Yanzhong Ju and Xinying Wang
Buildings 2025, 15(19), 3546; https://doi.org/10.3390/buildings15193546 - 2 Oct 2025
Viewed by 553
Abstract
Precast concrete frames integrating ultra-high-performance concrete (UHPC) beams and high-strength concrete (HSC) columns offer exceptional seismic resilience and construction efficiency. However, a performance-based seismic design methodology tailored for this hybrid structural system remains underdeveloped. This study aims to develop and validate a direct [...] Read more.
Precast concrete frames integrating ultra-high-performance concrete (UHPC) beams and high-strength concrete (HSC) columns offer exceptional seismic resilience and construction efficiency. However, a performance-based seismic design methodology tailored for this hybrid structural system remains underdeveloped. This study aims to develop and validate a direct displacement-based design (DDBD) procedure specifically for precast UHPC-HSC frames. A novel six-tier performance classification scheme (from no damage to severe damage) was established, with quantitative limit values of interstory drift ratio proposed based on experimental data and code calibration. The DDBD methodology incorporates determining the target displacement profile, converting the multi-degree-of-freedom system to an equivalent single-degree-of-freedom system, and utilizing a displacement response spectrum. A ten-story case study frame was designed using this procedure and rigorously evaluated through pushover analysis. The results demonstrate that the designed frame consistently met the predefined performance objectives under various seismic intensity levels, confirming the effectiveness and reliability of the proposed DDBD method. This work contributes a performance oriented seismic design framework that enhances the applicability and reliability of UHPC-HSC structures in earthquake regions, offering both theoretical insight and procedural guidance for engineering practice. Full article
Show Figures

Figure 1

21 pages, 4176 KB  
Article
Anti-Overturning Performance of Prefabricated Foundations for Distribution Line Poles
by Liang Zhang, Chen Chen, Yan Yang, Kai Niu, Weihao Xu and Dehong Wang
Buildings 2025, 15(15), 2717; https://doi.org/10.3390/buildings15152717 - 1 Aug 2025
Cited by 1 | Viewed by 860
Abstract
To enhance the anti-overturning performance of poles and prevent tilting or collapse, a prefabricated foundation for distribution lines is developed. Field tests are conducted on five groups of foundations. Based on the test results, finite element analysis (FEA) is employed to investigate the [...] Read more.
To enhance the anti-overturning performance of poles and prevent tilting or collapse, a prefabricated foundation for distribution lines is developed. Field tests are conducted on five groups of foundations. Based on the test results, finite element analysis (FEA) is employed to investigate the influence of different factors—such as pole embedment depth, foundation locations, soil type, and soil parameters—on the anti-overturning performance of pole prefabricated foundations. The results indicate that under ultimate load conditions, the reaction force distribution at the base of the foundation approximates a triangular pattern, and the lateral earth pressure on the pole follows an approximately quadratic parabolic distribution along the depth. When the foundation size increases from 0.8 m to 0.9 m, the bearing capacity of the prefabricated foundation improves by 8%. Furthermore, when the load direction changes from 0° to 45°, the foundation’s bearing capacity increases by 14%. When the foundation is buried at a depth of 1.0 m, compared with the ground position, the ultimate overturning moment of the prefabricated foundation increases by 10%. Based on field test results, finite element simulation results, and limit equilibrium theory, a calculation method for the anti-overturning bearing capacity of prefabricated pole foundations is developed, which can provide a practical reference for the engineering design of distribution line poles and their prefabricated foundations. Full article
Show Figures

Figure 1

17 pages, 4551 KB  
Article
Study on the Bearing Performance of Pole-Assembled Inclined Pile Foundation Under Downward Pressure-Horizontal Loads
by Chong Zhao, Wenzhuo Song, Wenzheng Hao, Furan Guo, Yan Yang, Mengxin Kang, Liang Zhang and Yun Wang
Buildings 2025, 15(15), 2656; https://doi.org/10.3390/buildings15152656 - 28 Jul 2025
Cited by 1 | Viewed by 615
Abstract
A novel prefabricated pile foundation is presented to improve the disaster resistance of the pole line. Bearing performance analysis of prefabricated inclined pile foundations for electric poles under downward pressure-horizontal loading is carried out, and the effects of prefabricated foundation dimensions and pile [...] Read more.
A novel prefabricated pile foundation is presented to improve the disaster resistance of the pole line. Bearing performance analysis of prefabricated inclined pile foundations for electric poles under downward pressure-horizontal loading is carried out, and the effects of prefabricated foundation dimensions and pile inclination on the horizontal load–displacement curves at the top of the poles, the horizontal displacement and settlement at the top of the piles, the horizontal displacement and tilt rate of the poles’ bodies and piles bending moments are investigated. The findings indicate the following: as the prefabricated foundation size grows, the bearing capacity of the foundation improves, and the anti-overturning ability of the electric pole improves; the foundation size increases from 0.9 m to 1.35 m, the anti-overturning bearing capacity of the foundation increases by 15.77%, the maximum bending moment of the foundation pile body increases by 19.7%, and the maximum bending moment occurs at about 0.2 m of the pile body; the bearing capacity of inclined piles is larger than that of straight piles—with an increase in the pile inclination angle, the foundation bearing performance increases, and the overturning bearing capacity of the poles increases; the pile inclination angle grows from 0° to 20°, the overturning bearing performance of the foundation increases by 19.2%, the maximum bending moment of the foundation piles reduces by 21.2%, and the maximum of the bending moment occurs at the pile body at a position of about 0.2 m. Full article
Show Figures

Figure 1

17 pages, 3069 KB  
Article
Experimental Study on Bending Performance of Prefabricated Retaining Wall
by Yidan Ma, Hengchen Du, Shicheng Nie, Kai Zhu, Han Liu and Dehong Wang
Buildings 2025, 15(13), 2169; https://doi.org/10.3390/buildings15132169 - 21 Jun 2025
Viewed by 695
Abstract
To address the engineering issues of difficult quality control, complex construction processes, and long construction periods in cast-in-place protective walls for manually excavated piles, a prefabricated protective wall structure is proposed. This study aims to investigate its mechanical properties and key influencing parameters [...] Read more.
To address the engineering issues of difficult quality control, complex construction processes, and long construction periods in cast-in-place protective walls for manually excavated piles, a prefabricated protective wall structure is proposed. This study aims to investigate its mechanical properties and key influencing parameters through experiments. Six groups of prefabricated wall segment specimens with different wall thicknesses (50 mm, 65 mm) and concrete strengths (C50 concrete, reactive powder concrete RPC) were designed, and two-point bending tests were conducted to systematically analyze their failure characteristics, crack development patterns, and strain distribution laws. The test results show that the peak vertical bending displacements at mid-span of the specimens are 11–18 mm (1.83–2.71% of the radius). The 65-mm-thick specimens exhibit 3–10% higher flexural strength than the 50-mm-thick ones, and reactive powder concrete (RPC) specimens of the same thickness show an 8.3% increase in strength compared to C50 concrete specimens. When the load reaches 80% of the ultimate load, abrupt changes in concrete strain occur at the mid-span and loading points, while the strain at the fixed end is only 15–20% of the mid-span strain. The prefabricated protective wall demonstrates superior deformation resistance, with vertical displacements (3–5% of the radius) significantly lower than those of cast-in-place walls. This research clarifies the influence of wall thickness and concrete strength on the mechanical properties of prefabricated protective walls, providing key mechanical parameters to support their engineering applications. Full article
Show Figures

Figure 1

Review

Jump to: Research

26 pages, 2428 KB  
Review
A Review of Transmission Line Icing Disasters: Mechanisms, Detection, and Prevention
by Jie Hu, Longjiang Liu, Xiaolei Zhang and Yanzhong Ju
Buildings 2025, 15(20), 3757; https://doi.org/10.3390/buildings15203757 - 17 Oct 2025
Viewed by 1559
Abstract
Transmission line icing poses a significant natural disaster threat to power grid security. This paper systematically reviews recent advances in the understanding of icing mechanisms, intelligent detection, and prevention technologies, while providing perspectives on future development directions. In mechanistic research, although a multi-physics [...] Read more.
Transmission line icing poses a significant natural disaster threat to power grid security. This paper systematically reviews recent advances in the understanding of icing mechanisms, intelligent detection, and prevention technologies, while providing perspectives on future development directions. In mechanistic research, although a multi-physics coupling framework has been established, characterization of dynamic evolution over complex terrain and coupled physical mechanisms remains inadequate. Detection technology is undergoing a paradigm shift from traditional contact measurements to non-contact intelligent perception. Visual systems based on UAVs and fixed platforms have achieved breakthroughs in ice recognition and thickness retrieval, yet their performance remains constrained by image quality, data scale, and edge computing capabilities. Anti-/de-icing technologies have evolved into an integrated system combining active intervention and passive defense: DC de-icing (particularly MMC-based topologies) has become the mainstream active solution for high-voltage lines due to its high efficiency and low energy consumption; superhydrophobic coatings, photothermal functional coatings, and expanded-diameter conductors show promising potential but face challenges in durability, environmental adaptability, and costs. Future development relies on the deep integration of mechanistic research, intelligent perception, and active prevention technologies. Through multidisciplinary innovation, key technologies such as digital twins, photo-electro-thermal collaborative response systems, and intelligent self-healing materials will be advanced, with the ultimate goal of comprehensively enhancing power grid resilience under extreme climate conditions. Full article
Show Figures

Figure 1

Back to TopTop