Advancements in Smart Civil Engineering: Durability, Seismic Resilience, Construction, and Composite Repair Technologies

A special issue of Buildings (ISSN 2075-5309). This special issue belongs to the section "Building Structures".

Deadline for manuscript submissions: 31 January 2026 | Viewed by 1015

Special Issue Editors


E-Mail Website
Guest Editor
College of Civil and Transportation Engineering, Hohai University, Nanjing 210024, China
Interests: anti-seismic and durable RC structures; new structural materials
Special Issues, Collections and Topics in MDPI journals
College of Civil and Transportation Engineering, Hohai University, Nanjing 210098, China
Interests: seismic analysis; seismic damage; nonlinear analysis; multi-scale simulation; peridynamics

E-Mail Website
Guest Editor
School of Civil Engineering, Southeast University, Nanjing 211189, China
Interests: structural healthy monitoring; offshore structures; earthquake engineering; reliability design; steel and concrete structures

E-Mail Website
Guest Editor
School of Civil Engineering, Nanjing Tech University, Nanjing 211816, China
Interests: deep learning; computer vision; structural health monitoring; geotechnical engineering materials

E-Mail Website
Guest Editor
College of Civil Engineering, Nanjing Forestry University, Nanjing 210037, China
Interests: earthquake engineering; urban resilience; fragility analysis; performance-based design
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

This Special Issue will bring together the latest advancements in smart civil engineering, with a focus on enhancing structural durability, seismic resilience, innovative construction methods, and composite repair technologies. The rapid development of smart civil engineering is driving the industry towards more efficient and sustainable practices. This Special Issue will cover a broad spectrum of topics, from advanced materials and structural design to intelligent construction techniques, contributing to the global infrastructure landscape. It will provide a platform for researchers and professionals to showcase innovations and solutions that are transforming the civil engineering sector. Topics relevant to this Special Issue include, but are not limited to, the following:

  • Advanced materials for civil engineering;
  • Life cycle assessment and environmental impacts;
  • Structural health monitoring and maintenance;
  • Seismic resilience and earthquake engineering;
  • Intelligent construction techniques;
  • Sustainable construction practices;
  • Composite repair and strengthening technologies;
  • Smart infrastructure and urban development;
  • Resilient infrastructure systems;
  • Innovative structural design;
  • Computational methods and simulations.

Dr. Qin Zhang
Dr. Baoyin Sun
Dr. Zhiwei Shan
Dr. Ziqi Li
Dr. Yantai Zhang
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Buildings is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2600 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • smart civil engineering
  • structural durability
  • seismic design
  • composite repair
  • intelligent construction technologies
  • sustainable building
  • high-performance materials
  • seismic resilience
  • structural optimization
  • infrastructure repair

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • Reprint: MDPI Books provides the opportunity to republish successful Special Issues in book format, both online and in print.

Further information on MDPI's Special Issue policies can be found here.

Published Papers (3 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

23 pages, 6095 KiB  
Article
Investigation on Shear Lugs Used in Equipment Foundations of Nuclear Engineering
by Yuan Gong, Xinbo Li, Chen Zhao and Yanhua Zhao
Buildings 2025, 15(14), 2435; https://doi.org/10.3390/buildings15142435 - 11 Jul 2025
Abstract
This paper investigates the shear performance of shear lugs commonly used in nuclear equipment foundations. A total of six groups of H-shaped steel shear lug specimens, six groups of angle steel shear lug specimens, and eight groups of steel plate shear lug specimens [...] Read more.
This paper investigates the shear performance of shear lugs commonly used in nuclear equipment foundations. A total of six groups of H-shaped steel shear lug specimens, six groups of angle steel shear lug specimens, and eight groups of steel plate shear lug specimens are designed and tested under horizontal shear loading. The failure modes, shear capacities, and deformation characteristics of the specimens are systematically examined. Furthermore, the influence of the embedment depth of the shear lug and the distance from the shear lug to the concrete edge on the shear performance of specimens is thoroughly analyzed. Based on the test results, equations for calculating the shear capacity of shear lugs are proposed. The result indicates that the failure modes of the three types of specimens under shear loading mainly show concrete shear breakout failure, and the changes in the embedment depth and concrete edge distance have a large effect on the shear capacity and ductility of the specimen. The proposed equations show good agreement with the test results, which can provide a theoretical foundation for the design of the shear lugs used in nuclear engineering. Full article
Show Figures

Figure 1

24 pages, 4306 KiB  
Article
Structural Behavior Analyses and Simple Calculation of Asynchronous-Pouring Construction in PC Composite Girder Bridges with Corrugated Webs for Sustainability
by Bo Gan, Jun He, Sidong Feng, Baojun Guo, Bo Liu and Weisheng Lu
Buildings 2025, 15(14), 2434; https://doi.org/10.3390/buildings15142434 - 11 Jul 2025
Abstract
Asynchronous-pouring construction (APC) technology employs a suspended hanging basket directly supported by corrugated steel webs (CSWs) with high shear strength, significantly enhancing construction efficiency. To further elucidate the characteristics of APC and promote its application in prestressed concrete (PC) composite box girder bridges [...] Read more.
Asynchronous-pouring construction (APC) technology employs a suspended hanging basket directly supported by corrugated steel webs (CSWs) with high shear strength, significantly enhancing construction efficiency. To further elucidate the characteristics of APC and promote its application in prestressed concrete (PC) composite box girder bridges with CSWs, this study analyzes the sustainable development of APC from two aspects, including environmental impact and economic performance. Finite element models of APC and traditional balanced cantilever construction (TBCC) were established for the case bridge with a main span of 105 m. The stress distribution and deflection of the main girder in the cantilever construction state are compared with field measurements, and the variations in stress and deflection in typical sections during construction are analyzed. Additionally, a simplified theoretical method is proposed for calculating stress and deflection in PC composite girder bridges during the cantilever construction stage using APC. Results demonstrate that APC demonstrates significant advantages in reducing economic costs and minimizing long-term environmental impacts. Furthermore, this method ensures acceptable stress and deflection throughout construction. The proposed simplified formula for CSW deflection in the maximum segment agrees well with both measured data and finite element results, providing a valuable reference for deflection calculation in APC applications. Full article
Show Figures

Figure 1

24 pages, 5158 KiB  
Article
Seismic Demand Prediction in Laminated Bamboo Frame Structures: A Comparative Study of Intensity Measures for Performance-Based Design
by Yantai Zhang, Jingpu Zhang, Yujie Gu, Jinglong Zhang and Kaiqi Zheng
Buildings 2025, 15(12), 2039; https://doi.org/10.3390/buildings15122039 - 13 Jun 2025
Viewed by 391
Abstract
Engineered laminated bamboo frame structures have seen notable advancements in China, driven by their potential in sustainable construction. However, accurately predicting their seismic performance remains a pivotal challenge. Structural and non-structural damage caused by earthquakes can severely compromise building operability, lead to substantial [...] Read more.
Engineered laminated bamboo frame structures have seen notable advancements in China, driven by their potential in sustainable construction. However, accurately predicting their seismic performance remains a pivotal challenge. Structural and non-structural damage caused by earthquakes can severely compromise building operability, lead to substantial economic losses, and disrupt safe evacuation processes, collectively exacerbating disaster impacts. To address this, three laminated bamboo frame models (3-, 4-, and 5-story) were developed, integrating energy-dissipating T-shaped steel plate beam–column connections. Two engineering demand parameters—peak inter-story drift ratio (PIDR) and peak floor acceleration (PFA)—were selected to quantify seismic responses under near-field and far-field ground motions. The study systematically evaluates suitable intensity measures for these parameters, emphasizing efficiency and sufficiency criteria. Regarding efficiency, the applicable intensity measures for PFA differ from those for PIDR. The measures for PFA tend to focus more on acceleration amplitude-related measures such as peak ground accelerations (PGA), sustained maximum acceleration (SMA), effective design acceleration (EDA), and A95 (the acceleration at 95% Arias intensity), while the measures for PIDR are primarily based on spectral acceleration-related measures such as Sa(T1) (spectral acceleration at fundamental period), etc. Concerning sufficiency, significant differences exist in the applicable measures for PFA and PIDR, and they are greatly influenced by ground motion characteristics. Full article
Show Figures

Figure 1

Back to TopTop