Topical Collection "Collection on Systems Neuroscience"

A topical collection in Brain Sciences (ISSN 2076-3425). This collection belongs to the section "Systems Neuroscience".

Editor

Prof. Konstantin V. Slavin
E-Mail Website1 Website2
Guest Editor
Department of neurosurgery, University of Illinois at Chicago, Chicago IL 60612, USA
Tel. 3124936735
Interests: neuromodulation; facial pain; peripheral nerve stimulation; deep brain stimulation
Special Issues and Collections in MDPI journals

Topical Collection Information

Dear Colleagues,

This collection on system neuroscience is dedicated to the research and exploration of multifactorial and multidimensional processes, such as normal and pathological aspects of sensory and motor functions; the activity of limbic and cognitive systems; and cerebral control of homeostasis, locomotion, reproduction, etc. By building a bridge between various theoretical concepts, basic science research, and clinical medicine applications, the ‘’System Neuroscience’’ section of the journal provides an in-depth analysis of the intricate workings of the nervous system. The focus of this collection goes beyond isolated aspects of neuroscience research and dedicates itself to a more comprehensive view of neural mechanisms and functionality.

Prof. Dr. Konstantin V. Slavin
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All papers will be peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the collection website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Brain Sciences is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 1400 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Published Papers (7 papers)

2019

Open AccessArticle
Should the Minimal Intervention Principle Be Considered When Investigating Dual-Tasking Effects on Postural Control?
Brain Sci. 2020, 10(1), 1; https://doi.org/10.3390/brainsci10010001 - 19 Dec 2019
Abstract
Dual-tasking charges the sensorimotor system with performing two tasks simultaneously. Center of pressure (COP) analysis reveals the postural control that is altered during dual-tasking, but may not reveal the underlying neural mechanisms. In the current study, we hypothesized that the minimal intervention principle [...] Read more.
Dual-tasking charges the sensorimotor system with performing two tasks simultaneously. Center of pressure (COP) analysis reveals the postural control that is altered during dual-tasking, but may not reveal the underlying neural mechanisms. In the current study, we hypothesized that the minimal intervention principle (MIP) provides a concept by which dual-tasking effects on the organization and prioritization of postural control can be predicted. Postural movements of 23 adolescents (age 12.7 ± 1.3; 8 females) and 15 adults (26.9 ± 2.3) were measured in a bipedal stance with eyes open, eyes closed and eyes open while performing a dual-task using a force plate and 39 reflective markers. COP data was analyzed by calculating the mean velocity, standard deviation and amplitude of displacement. Kinematic data was examined by performing a principal component analysis (PCA) and extracting postural movement components. Two variables were determined to investigate changes in amplitude (aVark) and in control (Nk) of the principal movement components. Results in aVark and in Nk agreed well with the predicted dual-tasking effects. Thus, the current study corroborates the notion that the MIP should be considered when investigating postural control under dual-tasking conditions. Full article
Show Figures

Figure 1

Open AccessArticle
The Influence of Subclinical Neck Pain on Neurophysiological and Behavioral Measures of Multisensory Integration
Brain Sci. 2019, 9(12), 362; https://doi.org/10.3390/brainsci9120362 - 09 Dec 2019
Abstract
Multisensory integration (MSI) is necessary for the efficient execution of many everyday tasks. Alterations in sensorimotor integration (SMI) have been observed in individuals with subclinical neck pain (SCNP). Altered audiovisual MSI has previously been demonstrated in this population using performance measures, such as [...] Read more.
Multisensory integration (MSI) is necessary for the efficient execution of many everyday tasks. Alterations in sensorimotor integration (SMI) have been observed in individuals with subclinical neck pain (SCNP). Altered audiovisual MSI has previously been demonstrated in this population using performance measures, such as reaction time. However, neurophysiological techniques have not been combined with performance measures in the SCNP population to determine differences in neural processing that may contribute to these behavioral characteristics. Electroencephalography (EEG) event-related potentials (ERPs) have been successfully used in recent MSI studies to show differences in neural processing between different clinical populations. This study combined behavioral and ERP measures to characterize MSI differences between healthy and SCNP groups. EEG was recorded as 24 participants performed 8 blocks of a simple reaction time (RT) MSI task, with each block consisting of 34 auditory (A), visual (V), and audiovisual (AV) trials. Participants responded to the stimuli by pressing a response key. Both groups responded fastest to the AV condition. The healthy group demonstrated significantly faster RTs for the AV and V conditions. There were significant group differences in neural activity from 100–140 ms post-stimulus onset, with the control group demonstrating greater MSI. Differences in brain activity and RT between individuals with SCNP and a control group indicate neurophysiological alterations in how individuals with SCNP process audiovisual stimuli. This suggests that SCNP alters MSI. This study presents novel EEG findings that demonstrate MSI differences in a group of individuals with SCNP. Full article
Show Figures

Figure 1

Open AccessArticle
Electrical Stimulation in the Claustrum Area Induces a Deepening of Isoflurane Anesthesia in Rat
Brain Sci. 2019, 9(11), 304; https://doi.org/10.3390/brainsci9110304 - 01 Nov 2019
Abstract
The role of the claustrum in consciousness and vigilance states was proposed more than two decades ago; however, its role in anesthesia is not yet understood, and this requires more investigation. The aim of our study was to assess the impact of claustrum [...] Read more.
The role of the claustrum in consciousness and vigilance states was proposed more than two decades ago; however, its role in anesthesia is not yet understood, and this requires more investigation. The aim of our study was to assess the impact of claustrum electrical stimulation during isoflurane anesthesia in adult rats. The claustrum in the left hemisphere was electrically stimulated using a bipolar tungsten electrode inserted stereotaxically. In order to monitor the anesthetic depth, the electrocorticogram (ECoG) was recorded before, during, and after claustrum stimulation using frontal and parietal epidural electrodes placed over the left hemisphere. After reaching stabilized slow-wave isoflurane anesthesia, twenty stimuli, each of one second duration with ten seconds interstimulus duration, were applied. ECoG analysis has shown that, after a delay from the beginning of stimulation, the slow-wave ECoG signal changed to a transient burst suppression (BS) pattern. Our results show that electrical stimulation of the claustrum area during slow-wave isoflurane anesthesia induces a transitory increase in anesthetic depth, documented by the appearance of a BS ECoG pattern, and suggests a potential role of claustrum in anesthesia. Full article
Show Figures

Figure 1

Open AccessArticle
Do EEG and Startle Reflex Modulation Vary with Self-Reported Aggression in Response to Violent Images?
Brain Sci. 2019, 9(11), 298; https://doi.org/10.3390/brainsci9110298 - 30 Oct 2019
Abstract
Increased violence and aggressive tendencies are a problem in much of the world and are often symptomatic of many other neurological and psychiatric conditions. Among clinicians, current methods of diagnosis of problem aggressive behaviour rely heavily on the use of self-report measures as [...] Read more.
Increased violence and aggressive tendencies are a problem in much of the world and are often symptomatic of many other neurological and psychiatric conditions. Among clinicians, current methods of diagnosis of problem aggressive behaviour rely heavily on the use of self-report measures as described by the Diagnostic and Statistical Manual of Mental Disorders 5th Edition (DSM-5) and International Classification of Diseases 10th revision (ICD-10). This approach does not place adequate emphasis on objective measures that are potentially sensitive to processes not feeding into subjective self-report. Numerous studies provide evidence that attitudes and affective content can be processed without leading to verbalised output. This exploratory study aimed to determine whether individuals in the normal population, grouped by self-reported aggression, differed in subjective versus objective affective processing. Participants (N = 52) were grouped based on their responses to the Buss–Durkee Hostility Inventory. They were then presented with affect-inducing images while brain event-related potentials (ERPs) and startle reflex modulation (SRM) were recorded to determine non-language-based processes. Explicit valence and arousal ratings for each image were taken to determine subjective affective effects. Results indicated no significant group differences for explicit ratings and SRM. However, ERP results demonstrated significant group differences between the ‘pleasant’ and ‘violent’ emotion condition in the frontal, central and parietal areas across both hemispheres. These findings suggest that parts of the brain process affective stimuli different to what conscious appraisal comes up with in participants varying in self-reported aggression. Full article
Show Figures

Figure 1

Open AccessArticle
Different Representation Procedures Originated from Multivariate Temporal Pattern Analysis of the Behavioral Response to Pain in Wistar Rats Tested in a Hot-Plate under Morphine
Brain Sci. 2019, 9(9), 233; https://doi.org/10.3390/brainsci9090233 - 12 Sep 2019
Abstract
Temporal pattern analysis is an advanced multivariate technique able to investigate the structure of behavior by unveiling the existence of statistically significant constraints among the interval length separating events in sequence. If on the one hand, such an approach allows investigating the behavioral [...] Read more.
Temporal pattern analysis is an advanced multivariate technique able to investigate the structure of behavior by unveiling the existence of statistically significant constraints among the interval length separating events in sequence. If on the one hand, such an approach allows investigating the behavioral response to pain in its most intimate and inner features, on the other hand, due to the meaning of the studies on pain, it is of relevant importance that the results utilize intuitive and easily comprehensible ways of representation. The aim of this paper is to show various procedures useful to represent the results originating from the multivariate T-pattern analysis of the behavioral response to pain in Wistar rats tested in a hot-plate and IP injected morphine or saline as a control. Full article
Show Figures

Figure 1

Open AccessArticle
Management of Sickle Cell Disease Pain among Adolescent and Pediatric Patients
Brain Sci. 2019, 9(8), 182; https://doi.org/10.3390/brainsci9080182 - 30 Jul 2019
Abstract
Management of sickle cell pain in adolescent and pediatric patients is inadequate, and the employment of proper management guidelines and practices are highly variable among different regions and populations. APPT, the multidimensional adolescent pediatric pain tool, promotes optimal pain management and introduces best [...] Read more.
Management of sickle cell pain in adolescent and pediatric patients is inadequate, and the employment of proper management guidelines and practices are highly variable among different regions and populations. APPT, the multidimensional adolescent pediatric pain tool, promotes optimal pain management and introduces best practical guidelines for pain management. The goal of this study is to assess pain and pain management among young patients diagnosed with sickle cell disease (SCD) by introducing the APPT as a tool for pain management, and analyze factors contributing to pain management. Information relevant to demographic data, SCD characteristics, APPT assessment, and satisfaction of patients regarding pain management were collected using a structured questionnaire. Results showed that SCD is highly associated with gender (p = 0.022), consanguinity (p = 0.012), and number of surgeries (p = 0.013). Most patients (58.9%) indicated the involvement of more than six body areas affected during pain crisis. Severe pain was described by more than half the patients (55.6%), while moderate pain was reported by 31.1%. Most patients described their pain by sensory, affective, and temporal words. The number of painful areas, pain intensity, and use of descriptive pain words was correlated and interpreted by age, BMI, school absence, and number of surgeries. Results of this study could provide guidance to healthcare providers to improve current practices for SCD pain management in order to improve health outcomes and patients’ satisfaction. Full article
Show Figures

Figure 1

Open AccessArticle
Relationship between Ischemic Stroke and Pulse Rate Variability as a Surrogate of Heart Rate Variability
Brain Sci. 2019, 9(7), 162; https://doi.org/10.3390/brainsci9070162 - 10 Jul 2019
Abstract
Autonomic reflex ascertains cardiovascular homeostasis during standing. Impaired autonomic reflex could lead to dizziness and falls while standing; this is prevalent in stroke survivors. Pulse rate variability (PRV) has been utilized in the literature in lieu of heart rate variability (HRV) for ambulatory [...] Read more.
Autonomic reflex ascertains cardiovascular homeostasis during standing. Impaired autonomic reflex could lead to dizziness and falls while standing; this is prevalent in stroke survivors. Pulse rate variability (PRV) has been utilized in the literature in lieu of heart rate variability (HRV) for ambulatory and portable monitoring of autonomic reflex predominantly in young, healthy individuals. Here, we compared the PRV with gold standard HRV for monitoring autonomic reflex in ischemic stroke survivors. Continuous blood pressure and electrocardiography were acquired from ischemic stroke survivors (64 ± 1 years) and age-matched controls (65 ± 2 years) during a 10-minute sit-to-stand test. Beat-by-beat heart period (represented by RR and peak-to-peak (PP) intervals), systolic blood pressure (SBP), diastolic blood pressure (DBP), and pulse arrival time (PAT), an indicator of arterial stiffness, were derived. Time and frequency domain HRV (from RR intervals) and PRV (from PP intervals) metrics were extracted. PAT was lower (248 ± 7 ms vs. 270 ± 8 ms, p < 0.05) suggesting higher arterial stiffness in stroke survivors compared to controls during standing. Further, compared to controls, the agreement between HRV and PRV was impaired in stroke survivors while standing. The study outcomes suggest that caution should be exercised when considering PRV as a surrogate of HRV for monitoring autonomic cardiovascular control while standing in stroke survivors. Full article
Show Figures

Figure 1

Back to TopTop