Special Issue "Advanced Optical Sensing Techniques for Applications in Biomedicine"

A special issue of Biosensors (ISSN 2079-6374). This special issue belongs to the section "Optical and Photonic Biosensors".

Deadline for manuscript submissions: 30 June 2023 | Viewed by 11815

Special Issue Editor

CNR-IOM, National Research Council of Italy, Materials Foundry, The Microfabrication Microsensing and Mechanobiology (3M) laboratory, Trieste, Italy
Interests: optical microscopy and manipulation; biophysics; cell signaling; cell mechanics

Special Issue Information

Dear Colleagues,

Due to technological advances and a continuously increasing demand in biomedicine, the optical techniques for medical imaging and diagnostics have been rapidly developed and optimized in the last decade. This has led to better sensitivity and resolution, faster and reliable detection, sensor miniaturization, new biomarkers, and multimodal sensing techniques for a wider range of applications.

This Special Issue invites original contributions on the development of advanced optical techniques and their implementation for biomedical applications. Contributions on topics, including, but not limited to, multimodal imaging and spectroscopy, super resolution, optical manipulation, lab-on-chip miniaturized solutions, cost-effective optical sensors, optical nanomaterials, optical manipulation, and optical fibre sensing, are highly expected. New applications of recognized optical methods and experimental results of novel optical techniques in the field of biomedicine are also very welcome. 

Dr. Dan Cojoc
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Biosensors is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2200 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • multimodal imaging and spectroscopy
  • superresolution in biomedicine
  • optical manipulation
  • cost effective optical sensors
  • optical nanomaterials
  • optical fibers
  • optical coherence tomography
  • photoacoustic imaging
  • microraman spectroscopy and SERS

Published Papers (10 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

Jump to: Review

Article
Fluholoscopy—Compact and Simple Platform Combining Fluorescence and Holographic Microscopy
Biosensors 2023, 13(2), 253; https://doi.org/10.3390/bios13020253 - 10 Feb 2023
Viewed by 674
Abstract
The combination of different imaging modalities into single imaging platforms has a strong potential in biomedical sciences as it permits the analysis of complementary properties of the target sample. Here, we report on an extremely simple, cost-effective, and compact microscope platform for achieving [...] Read more.
The combination of different imaging modalities into single imaging platforms has a strong potential in biomedical sciences as it permits the analysis of complementary properties of the target sample. Here, we report on an extremely simple, cost-effective, and compact microscope platform for achieving simultaneous fluorescence and quantitative phase imaging modes with the capability of working in a single snapshot. It is based on the use of a single illumination wavelength to both excite the sample’s fluorescence and provide coherent illumination for phase imaging. After passing the microscope layout, the two imaging paths are separated using a bandpass filter, and the two imaging modes are simultaneously obtained using two digital cameras. We first present calibration and analysis of both fluorescence and phase imaging modalities working independently and, later on, experimental validation for the proposed common-path dual-mode imaging platform considering static (resolution test targets, fluorescent micro-beads, and water-suspended lab-made cultures) as well as dynamic (flowing fluorescent beads, human sperm cells, and live specimens from lab-made cultures) samples. Full article
(This article belongs to the Special Issue Advanced Optical Sensing Techniques for Applications in Biomedicine)
Show Figures

Figure 1

Article
Ultrasensitive Optical Fingerprinting of Biorelevant Molecules by Means of SERS-Mapping on Nanostructured Metasurfaces
Biosensors 2023, 13(1), 46; https://doi.org/10.3390/bios13010046 - 28 Dec 2022
Viewed by 917
Abstract
The most relevant technique for portable (on-chip) sensors is Surface Enhanced Raman Scattering (SERS). This strategy crashes in the case of large (biorelevant) molecules and nano-objects, whose SERS spectra are irreproducible for “homeopathic” concentrations. We suggested solving this problem by SERS-mapping. We analyzed [...] Read more.
The most relevant technique for portable (on-chip) sensors is Surface Enhanced Raman Scattering (SERS). This strategy crashes in the case of large (biorelevant) molecules and nano-objects, whose SERS spectra are irreproducible for “homeopathic” concentrations. We suggested solving this problem by SERS-mapping. We analyzed the distributions of SERS parameters for relatively “small” (malachite green (MG)) and “large” (phthalocyanine, H2Pc*) molecules. While fluctuations of spectra for “small” MG were negligible, noticeable distribution of spectra was observed for “large” H2Pc*. We show that the latter is due to a random arrangement of molecules with respect to “hot spot” areas, which have limited sizes, thus amplifying the lines corresponding to vibrations of different molecule parts. We have developed a method for engineering low-cost SERS substrates optimized for the best enhancement efficiency and a measurement protocol to obtain a reliable Raman spectrum, even for a countable number of large molecules randomly distributed over the substrate. Full article
(This article belongs to the Special Issue Advanced Optical Sensing Techniques for Applications in Biomedicine)
Show Figures

Figure 1

Article
Correlative Raman–Electron–Light (CREL) Microscopy Analysis of Lipid Droplets in Melanoma Cancer Stem Cells
Biosensors 2022, 12(12), 1102; https://doi.org/10.3390/bios12121102 - 01 Dec 2022
Viewed by 749
Abstract
Among all neoplasms, melanoma is characterized by a very high percentage of cancer stem cells (CSCs). Several markers have been proposed for their identification, and lipid droplets (LDs) are among them. Different techniques are used for their characterization such as mass spectrometry, imaging [...] Read more.
Among all neoplasms, melanoma is characterized by a very high percentage of cancer stem cells (CSCs). Several markers have been proposed for their identification, and lipid droplets (LDs) are among them. Different techniques are used for their characterization such as mass spectrometry, imaging techniques, and vibrational spectroscopies. Some emerging experimental approaches for the study of LDs are represented by correlative light–electron microscopy and by correlative Raman imaging–scanning electron microscopy (SEM). Based on these scientific approaches, we developed a novel methodology (CREL) by combining Raman micro-spectroscopy, confocal fluorescence microscopy, and SEM coupled with an energy-dispersive X-ray spectroscopy module. This procedure correlated cellular morphology, chemical properties, and spatial distribution from the same region of interest, and in this work, we presented the application of CREL for the analysis of LDs within patient-derived melanoma CSCs (MCSCs). Full article
(This article belongs to the Special Issue Advanced Optical Sensing Techniques for Applications in Biomedicine)
Show Figures

Graphical abstract

Article
A Novel Methodology for Detecting Variations in Cell Surface Antigens Using Cell-Tearing by Optical Tweezers
Biosensors 2022, 12(8), 656; https://doi.org/10.3390/bios12080656 - 19 Aug 2022
Viewed by 932
Abstract
The quantitative analysis of cell surface antigens has attracted increasing attention due to the antigenic variation recognition that can facilitate early diagnoses. This paper presents a novel methodology based on the optical “cell-tearing” and the especially proposed “dilution regulations” to detect variations in [...] Read more.
The quantitative analysis of cell surface antigens has attracted increasing attention due to the antigenic variation recognition that can facilitate early diagnoses. This paper presents a novel methodology based on the optical “cell-tearing” and the especially proposed “dilution regulations” to detect variations in cell surface antigens. The cell attaches to the corresponding antibody-coated slide surface. Then, the cell-binding firmness between a single cell and the functionalized surface is assayed by optically tearing using gradually reduced laser powers incorporated with serial antibody dilutions. Groups B and B3 of red blood cells (RBCs) were selected as the experiment subject. The results indicate that a higher dilution called for lower power to tear off the cell binding. According to the proposed relative-quantitative analysis theory, antigenic variation can be intuitively estimated by comparing the maximum allowable dilution folds. The estimation result shows good consistency with the finding in the literature. This study suggests a novel methodology for examining the variation in cell surface antigens, expected to be widely capable with potential sensor applications not only in biochemistry and biophysics, but also in the micro-/nano- engineering field. Full article
(This article belongs to the Special Issue Advanced Optical Sensing Techniques for Applications in Biomedicine)
Show Figures

Figure 1

Article
Design of a Lab-On-Chip for Cancer Cell Detection through Impedance and Photoelectrochemical Response Analysis
Biosensors 2022, 12(6), 405; https://doi.org/10.3390/bios12060405 - 13 Jun 2022
Cited by 13 | Viewed by 1591
Abstract
In this study, a biochip was fabricated using a light-absorbing layer of a silicon solar element combined with serrated, interdigitated electrodes and used to identify four different types of cancer cells: CE81T esophageal cancer, OE21 esophageal cancer, A549 lung adenocarcinoma, and TSGH-8301 bladder [...] Read more.
In this study, a biochip was fabricated using a light-absorbing layer of a silicon solar element combined with serrated, interdigitated electrodes and used to identify four different types of cancer cells: CE81T esophageal cancer, OE21 esophageal cancer, A549 lung adenocarcinoma, and TSGH-8301 bladder cancer cells. A string of pearls was formed from dielectrophoretic aggregated cancer cells because of the serrated interdigitated electrodes. Thus, cancer cells were identified in different parts, and electron–hole pairs were separated by photo-excited carriers through the light-absorbing layer of the solar element. The concentration catalysis mechanism of GSH and GSSG was used to conduct photocurrent response and identification, which provides the fast, label-free measurement of cancer cells. The total time taken for this analysis was 13 min. Changes in the impedance value and photocurrent response of each cancer cell were linearly related to the number of cells, and the slope of the admittance value was used to distinguish the location of the cancerous lesion, the slope of the photocurrent response, and the severity of the cancerous lesion. The results show that the number of cancerous cells was directly proportional to the admittance value and the photocurrent response for all four different types of cancer cells. Additionally, different types of cancer cells could easily be differentiated using the slope value of the photocurrent response and the admittance value. Full article
(This article belongs to the Special Issue Advanced Optical Sensing Techniques for Applications in Biomedicine)
Show Figures

Figure 1

Article
Label-Free miRNA-21 Analysis Based on Strand Displacement and Terminal Deoxynucleotidyl Transferase-Assisted Amplification Strategy
Biosensors 2022, 12(5), 328; https://doi.org/10.3390/bios12050328 - 12 May 2022
Cited by 2 | Viewed by 1166
Abstract
MicroRNAs (miRNAs) are regarded as a rising star in the biomedical industry. By monitoring slight increases in miRNA-21 levels, the possibilities of multi-type malignancy can be evaluated more precisely and earlier. However, the inconvenience and insensitivity of traditional methods for detecting miRNA-21 levels [...] Read more.
MicroRNAs (miRNAs) are regarded as a rising star in the biomedical industry. By monitoring slight increases in miRNA-21 levels, the possibilities of multi-type malignancy can be evaluated more precisely and earlier. However, the inconvenience and insensitivity of traditional methods for detecting miRNA-21 levels remains challenging. In this study, a partially complementary cDNA probe was designed to detect miRNA-21 with target-triggered dual amplification based on strand displacement amplification (SDA) and terminal deoxynucleotidyl transferase (TdT)-assisted amplification. In this system, the presence of miRNA-21 can hybridize with template DNA to initiate SDA, generating a large number of trigger molecules. With the assistance of TdT and dGTP, the released trigger DNA with 3′-OH terminal can be elongated to a superlong poly(guanine) sequence, and a notable fluorescence signal was observed in the presence of thioflavin T. By means of dual amplification strategy, the sensing platform showed a good response tomiRNA-21 with a detection limit of 1.7 pM (S/N = 3). Moreover, the specificity of this method was verified using a set of miRNA with sequence homologous to miRNA-21. In order to further explore its practical application capabilities, the expression of miRNA in different cell lines was quantitatively analyzed and compared with the qRT-PCR. The considerable results of this study suggest great potential for the application of the proposed approach in clinical diagnosis. Full article
(This article belongs to the Special Issue Advanced Optical Sensing Techniques for Applications in Biomedicine)
Show Figures

Figure 1

Review

Jump to: Research

Review
Gold Nanoparticle-Based Plasmonic Biosensors
Biosensors 2023, 13(3), 411; https://doi.org/10.3390/bios13030411 - 22 Mar 2023
Viewed by 251
Abstract
One of the emerging technologies in molecular diagnostics of the last two decades is the use of gold nanoparticles (AuNPs) for biosensors. AuNPs can be functionalized with various biomolecules, such as nucleic acids or antibodies, to recognize and bind to specific targets. AuNPs [...] Read more.
One of the emerging technologies in molecular diagnostics of the last two decades is the use of gold nanoparticles (AuNPs) for biosensors. AuNPs can be functionalized with various biomolecules, such as nucleic acids or antibodies, to recognize and bind to specific targets. AuNPs present unique optical properties, such as their distinctive plasmonic band, which confers a bright-red color to AuNP solutions, and their extremely high extinction coefficient, which makes AuNPs detectable by the naked eye even at low concentrations. Ingenious molecular mechanisms triggered by the presence of a target analyte can change the colloidal status of AuNPs from dispersed to aggregated, with a subsequent visible change in color of the solution due to the loss of the characteristic plasmonic band. This review describes how the optical properties of AuNPs have been exploited for the design of plasmonic biosensors that only require the simple mixing of reagents combined with a visual readout and focuses on the molecular mechanisms involved. This review illustrates selected examples of AuNP-based plasmonic biosensors and promising approaches for the point-of-care testing of various analytes, spanning from the viral RNA of SARS-CoV-2 to the molecules that give distinctive flavor and color to aged whisky. Full article
(This article belongs to the Special Issue Advanced Optical Sensing Techniques for Applications in Biomedicine)
Show Figures

Figure 1

Review
Label-Free Long-Term Methods for Live Cell Imaging of Neurons: New Opportunities
Biosensors 2023, 13(3), 404; https://doi.org/10.3390/bios13030404 - 20 Mar 2023
Viewed by 219
Abstract
Time-lapse light microscopy combined with in vitro neuronal cultures has provided a significant contribution to the field of Developmental Neuroscience. The establishment of the neuronal polarity, i.e., formation of axons and dendrites, key structures responsible for inter-neuronal signaling, was described in 1988 by [...] Read more.
Time-lapse light microscopy combined with in vitro neuronal cultures has provided a significant contribution to the field of Developmental Neuroscience. The establishment of the neuronal polarity, i.e., formation of axons and dendrites, key structures responsible for inter-neuronal signaling, was described in 1988 by Dotti, Sullivan and Banker in a milestone paper that continues to be cited 30 years later. In the following decades, numerous fluorescently labeled tags and dyes were developed for live cell imaging, providing tremendous advancements in terms of resolution, acquisition speed and the ability to track specific cell structures. However, long-term recordings with fluorescence-based approaches remain challenging because of light-induced phototoxicity and/or interference of tags with cell physiology (e.g., perturbed cytoskeletal dynamics) resulting in compromised cell viability leading to cell death. Therefore, a label-free approach remains the most desirable method in long-term imaging of living neurons. In this paper we will focus on label-free high-resolution methods that can be successfully used over a prolonged period. We propose novel tools such as scanning ion conductance microscopy (SICM) or digital holography microscopy (DHM) that could provide new insights into live cell dynamics during neuronal development and regeneration after injury. Full article
(This article belongs to the Special Issue Advanced Optical Sensing Techniques for Applications in Biomedicine)
Show Figures

Graphical abstract

Review
Optical Light Sources and Wavelengths within the Visible and Near-Infrared Range Using Photoacoustic Effects for Biomedical Applications
Biosensors 2022, 12(12), 1154; https://doi.org/10.3390/bios12121154 - 10 Dec 2022
Viewed by 556
Abstract
The photoacoustic (PA) effect occurs when sound waves are generated by light according to the thermodynamic and optical properties of the materials; they are absorption spectroscopic techniques that can be applied to characterize materials that absorb pulse or continuous wave (CW)-modulated electromagnetic radiation. [...] Read more.
The photoacoustic (PA) effect occurs when sound waves are generated by light according to the thermodynamic and optical properties of the materials; they are absorption spectroscopic techniques that can be applied to characterize materials that absorb pulse or continuous wave (CW)-modulated electromagnetic radiation. In addition, the wavelengths and properties of the incident light significantly impact the signal-to-ratio and contrast with photoacoustic signals. In this paper, we reviewed how absorption spectroscopic research results have been used in applying actual photoacoustic effects, focusing on light sources of each wavelength. In addition, the characteristics and compositions of the light sources used for the applications were investigated and organized based on the absorption spectrum of the target materials. Therefore, we expect that this study will help researchers (who desire to study photoacoustic effects) to more efficiently approach the appropriate conditions or environments for selecting the target materials and light sources. Full article
(This article belongs to the Special Issue Advanced Optical Sensing Techniques for Applications in Biomedicine)
Show Figures

Figure 1

Review
The Current State of Optical Sensors in Medical Wearables
Biosensors 2022, 12(4), 217; https://doi.org/10.3390/bios12040217 - 06 Apr 2022
Cited by 9 | Viewed by 3902
Abstract
Optical sensors play an increasingly important role in the development of medical diagnostic devices. They can be very widely used to measure the physiology of the human body. Optical methods include PPG, radiation, biochemical, and optical fiber sensors. Optical sensors offer excellent metrological [...] Read more.
Optical sensors play an increasingly important role in the development of medical diagnostic devices. They can be very widely used to measure the physiology of the human body. Optical methods include PPG, radiation, biochemical, and optical fiber sensors. Optical sensors offer excellent metrological properties, immunity to electromagnetic interference, electrical safety, simple miniaturization, the ability to capture volumes of nanometers, and non-invasive examination. In addition, they are cheap and resistant to water and corrosion. The use of optical sensors can bring better methods of continuous diagnostics in the comfort of the home and the development of telemedicine in the 21st century. This article offers a large overview of optical wearable methods and their modern use with an insight into the future years of technology in this field. Full article
(This article belongs to the Special Issue Advanced Optical Sensing Techniques for Applications in Biomedicine)
Show Figures

Figure 1

Back to TopTop