Signal Amplification in Biosensing

A special issue of Biosensors (ISSN 2079-6374). This special issue belongs to the section "Biosensor Materials".

Deadline for manuscript submissions: 31 December 2025 | Viewed by 282

Special Issue Editor


E-Mail Website
Guest Editor
College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang 455000, China
Interests: biosensors; redox cycling; immunosensors; DNA sensors; aptasensors
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

Sensitive and selective detection of chemical and biological targets is of importance in the fields of clinical diagnosis, environmental monitoring, and food quality control. Aiming to achieve excellent performances for the determination of low-abundance analytes, various signal amplification methods have been introduced into optical bioassays to improve the sensitivity, such as enzyme catalysis, nanomaterials, target-recycling, and nucleic acid amplification. In addition, redox cycling is a process that can repeatedly produce or consume signaling species in the presence of reversible redox species or mediators and extra reductants or oxidants. In a typical system, redox cycling can be achieved electrochemically, chemically or enzymatically based on repetitive oxidation–reduction reactions. Redox cycling can be simply coupled with other signal amplification methods, such as enzyme or nanocatalyst-driven chemical reactions and nanomaterial-based containers. Contributions (original articles or comprehensive reviews) to this Special Issue should cover signal amplification to determine various targets, including colorimetry, fluorescence, chemiluminescence, electrochemistry, photoelectrochemistry, electrochemiluminescence, surface-enhanced Raman scattering and so on.

Prof. Dr. Ning Xia
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Biosensors is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2200 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • sensing
  • redox cycling
  • enzyme catalysis
  • immunosensors
  • DNA sensors
  • aptasensors

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • Reprint: MDPI Books provides the opportunity to republish successful Special Issues in book format, both online and in print.

Further information on MDPI's Special Issue policies can be found here.

Published Papers (1 paper)

Order results
Result details
Select all
Export citation of selected articles as:

Research

15 pages, 6302 KiB  
Article
Fluorescent–Electrochemical–Colorimetric Triple-Model Immunoassays with Multifunctional Metal–Organic Frameworks for Signal Amplification
by Ning Xia, Chuye Zheng and Gang Liu
Biosensors 2025, 15(6), 376; https://doi.org/10.3390/bios15060376 - 11 Jun 2025
Abstract
Multimode immunoassays based on multiple response mechanisms have received great attention due to their capacity to effectively improve the accuracy and reliability of biosensing platforms. However, few strategies have been reported for triple-mode immunoassays due to the shortage of multifunctional sensing materials and [...] Read more.
Multimode immunoassays based on multiple response mechanisms have received great attention due to their capacity to effectively improve the accuracy and reliability of biosensing platforms. However, few strategies have been reported for triple-mode immunoassays due to the shortage of multifunctional sensing materials and the incompatibility of signal transduction methods in different detection modes. In this work, a fluorescent–electrochemical–colorimetric triple-mode immunoassay platform was proposed with Cu-based metal–organic frameworks (MOFs) as the signal labels. The captured Cu-MOFs were successfully decomposed under an acidic condition, leading to the release of numerous Cu2+ ions and 2-aminobenzene-1,4-dicarboxylic acid (NH2-BDC) ligands. The released NH2-BDC were determined by fluorescence titration. Meanwhile, the released Cu2+ were readily quantified by differential pulse voltammetry (DPV) and simply detected through the catalytic oxidation of chromogenic substrate 3,3′,5,5′-tetramethylbenzidine (TMB). Taking alpha-fetoprotein (AFP) as a model analyte, the designed triple-mode immunoassays showed good performances with the linear range of 10–200 pg/mL, 10–200 pg/mL, and 1–100 pg/mL for the fluorescent, electrochemical, and colorimetric modes, respectively. The proposed triple-mode biosensing platforms show great potential for the applications in disease diagnosis, since they can be easily extended to other bioassays by changing the targets and recognition elements. Full article
(This article belongs to the Special Issue Signal Amplification in Biosensing)
Show Figures

Figure 1

Back to TopTop