Novel Biosensors for Food Safety and Environmental Monitoring

A special issue of Biosensors (ISSN 2079-6374). This special issue belongs to the section "Environmental Biosensors and Biosensing".

Deadline for manuscript submissions: closed (29 February 2024) | Viewed by 15937

Special Issue Editors


E-Mail Website
Guest Editor
School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China
Interests: food safety analysis; nanozymes; environmental analysis
Special Issues, Collections and Topics in MDPI journals
Key Laboratory for Deep Processing of Major Grain and Oil, Ministry of Education/National R&D Center for Se-Rich Agricultural Products Processing, Wuhan Polytechnic University, Wuhan, China
Interests: carbohydrate; food materials; food nanotechnology; electrospinning; food packaging; delivery of nutraceuticals
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

Biosensors are used to measure the concentration of target analytes, which refers to molecules, materials or devices that transduce a chemical or biological recognition reaction into a physically detectable signal. In general, biosensors are portable with low energy consumption and allow real-time and on-site detection. We have witnessed the growth of the field in many directions over the years. Some discoveries may not have initially intended to contribute to biosensor research, but have been used by analytical chemists. Entering 2022, we wish to summarize some new trends in the biosensor field by organizing a Special Issue for Biosensors.

The SI journal caters to the needs of chemical and chemical engineers, material scientists, food chemists and microbiologists in the area of biosensors. The SI journal will mainly publish original research papers, review articles and short communications.

Dr. Jiaojiao Zhou
Dr. Jie Cai
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Biosensors is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2700 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • biosensors
  • sensors
  • food Safety
  • environmental monitoring
  • nanotechnology
  • nanomaterials

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • e-Book format: Special Issues with more than 10 articles can be published as dedicated e-books, ensuring wide and rapid dissemination.

Further information on MDPI's Special Issue polices can be found here.

Published Papers (7 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

Jump to: Review

16 pages, 2224 KiB  
Article
Highly Sensitive Whole-Cell Mercury Biosensors for Environmental Monitoring
by Dahlin Zevallos-Aliaga, Stijn De Graeve, Pamela Obando-Chávez, Nicolás A. Vaccari, Yue Gao, Tom Peeters and Daniel G. Guerra
Biosensors 2024, 14(5), 246; https://doi.org/10.3390/bios14050246 - 13 May 2024
Viewed by 1713
Abstract
Whole-cell biosensors could serve as eco-friendly and cost-effective alternatives for detecting potentially toxic bioavailable heavy metals in aquatic environments. However, they often fail to meet practical requirements due to an insufficient limit of detection (LOD) and high background noise. In this study, we [...] Read more.
Whole-cell biosensors could serve as eco-friendly and cost-effective alternatives for detecting potentially toxic bioavailable heavy metals in aquatic environments. However, they often fail to meet practical requirements due to an insufficient limit of detection (LOD) and high background noise. In this study, we designed a synthetic genetic circuit specifically tailored for detecting ionic mercury, which we applied to environmental samples collected from artisanal gold mining sites in Peru. We developed two distinct versions of the biosensor, each utilizing a different reporter protein: a fluorescent biosensor (Mer-RFP) and a colorimetric biosensor (Mer-Blue). Mer-RFP enabled real-time monitoring of the culture’s response to mercury samples using a plate reader, whereas Mer-Blue was analysed for colour accumulation at the endpoint using a specially designed, low-cost camera setup for harvested cell pellets. Both biosensors exhibited negligible baseline expression of their respective reporter proteins and responded specifically to HgBr2 in pure water. Mer-RFP demonstrated a linear detection range from 1 nM to 1 μM, whereas Mer-Blue showed a linear range from 2 nM to 125 nM. Our biosensors successfully detected a high concentration of ionic mercury in the reaction bucket where artisanal miners produce a mercury–gold amalgam. However, they did not detect ionic mercury in the water from active mining ponds, indicating a concentration lower than 3.2 nM Hg2+—a result consistent with chemical analysis quantitation. Furthermore, we discuss the potential of Mer-Blue as a practical and affordable monitoring tool, highlighting its stability, reliance on simple visual colorimetry, and the possibility of sensitivity expansion to organic mercury. Full article
(This article belongs to the Special Issue Novel Biosensors for Food Safety and Environmental Monitoring)
Show Figures

Figure 1

12 pages, 7459 KiB  
Article
Peptide-Decorated Microneedles for the Detection of Microplastics
by Suyeon Ahn, Namju Kim, Yonghyun Choi, Jiwon Kim, Hyeryun Hwang, Cholong Kim, Hee-Young Lee, Seungyoun Kim, Jin Su Kim, Hyun Ho Lee and Jonghoon Choi
Biosensors 2024, 14(3), 140; https://doi.org/10.3390/bios14030140 - 12 Mar 2024
Viewed by 2254
Abstract
The escalating utilization of plastics in daily life has resulted in pervasive environmental pollution and consequent health hazards. The challenge of detecting and capturing microplastics, which are imperceptible to the naked eye, is exacerbated by their diminutive size, hydrophobic surface properties, and capacity [...] Read more.
The escalating utilization of plastics in daily life has resulted in pervasive environmental pollution and consequent health hazards. The challenge of detecting and capturing microplastics, which are imperceptible to the naked eye, is exacerbated by their diminutive size, hydrophobic surface properties, and capacity to absorb organic compounds. This study focuses on the application of peptides, constituted of specific amino acid sequences, and microneedles for the rapid and selective identification of microplastics. Peptides, due to their smaller size and greater environmental stability compared with antibodies, emerge as a potent solution to overcome the limitations inherent in existing detection methodologies. To immobilize peptides onto microneedles, this study employed microneedles embedded with gold nanorods, augmenting them with sulfhydryl (SH) groups at the peptides’ termini. The sensor developed through this methodology exhibited efficient peptide binding to the microneedle tips, thereby facilitating the capture of microplastics. Raman spectroscopy was employed for the detection of microplastics, with the results demonstrating successful attachment to the microneedles. This novel approach not only facilitates localized analysis but also presents a viable strategy for the detection of microplastics across diverse environmental settings. Full article
(This article belongs to the Special Issue Novel Biosensors for Food Safety and Environmental Monitoring)
Show Figures

Figure 1

17 pages, 2075 KiB  
Article
Immunotechniques for the Group Determination of Macrolide Antibiotics Traces in the Environment Using a Volume-Mediated Sensitivity Enhancement Strategy
by Maksim A. Burkin, Anna N. Tevyashova, Elena N. Bychkova, Artem O. Melekhin and Inna A. Galvidis
Biosensors 2023, 13(10), 921; https://doi.org/10.3390/bios13100921 - 10 Oct 2023
Viewed by 1458
Abstract
Macrolide antibiotics, which are effective antimicrobial agents, are intensively used in human and veterinary medicine, as well as in agriculture. Consequently, they are found all over the world as environmental pollutants, causing harm to sensitive ecological communities and provoking a selection of resistant [...] Read more.
Macrolide antibiotics, which are effective antimicrobial agents, are intensively used in human and veterinary medicine, as well as in agriculture. Consequently, they are found all over the world as environmental pollutants, causing harm to sensitive ecological communities and provoking a selection of resistant forms. A novel azithromycin derivative, which was used as hapten conjugate, ensured the group immunorecognition of six major macrolide representatives (105–41%), namely erythromycin, erythromycin ethylsuccinate, clarithromycin, roxithromycin, azithromycin, and dirithromycin in a competitive immunoassay based on anti-clarithromycin antibodies. The heterologous hapten-based ELISA format resulted in a 5-fold increase in sensitivity, with an IC50 value of 0.04 ng/mL for erythromycin. In this study, we proposed an underexploited strategy in an immunoassay field to significantly improve the detectability of analytes in environmental samples. Unlike most approaches, it does not require special enhancers/amplifiers or additional concentration/extraction procedures; instead, it involves analyzing a larger volume of test samples. A gradual volume increase in the samples (from 0.025 to 10 mL) analyzed using a direct competitive ELISA, immunobeads, and immunofiltration assay formats based on the same reagents resulted in a significant improvement (more than 50-fold) in assay sensitivity and detection limit up to 5 and 1 pg/mL, respectively. The suitability of the test for detecting the macrolide contamination of natural water was confirmed by the recovery of macrolides from spiked blank samples (71.7–141.3%). During 2022–2023, a series of natural water samples from Lake Onega and its influents near Petrozavodsk were analyzed, using both the developed immunoassay and HPLC-MS/MS. The results revealed no contamination of macrolide antibiotic. Full article
(This article belongs to the Special Issue Novel Biosensors for Food Safety and Environmental Monitoring)
Show Figures

Figure 1

14 pages, 3836 KiB  
Communication
Bisphenol A Imprinted Electrochemical Sensor Based on Graphene Quantum Dots with Boron Functionalized g-C3N4 in Food Samples
by Haci Ahmet Deveci, Müge Mavioğlu Kaya, İnan Kaya, Bahar Bankoğlu Yola, Necip Atar and Mehmet Lütfi Yola
Biosensors 2023, 13(7), 725; https://doi.org/10.3390/bios13070725 - 12 Jul 2023
Cited by 15 | Viewed by 1999
Abstract
A molecular imprinted electrochemical sensor based on boron-functionalized graphitic carbon nitride (B-g-C3N4) and graphene quantum dots (GQDs) was presented for selective determination of bisphenol A (BPA). In particular, by combining the selectivity and high stability properties, which are the [...] Read more.
A molecular imprinted electrochemical sensor based on boron-functionalized graphitic carbon nitride (B-g-C3N4) and graphene quantum dots (GQDs) was presented for selective determination of bisphenol A (BPA). In particular, by combining the selectivity and high stability properties, which are the most important advantages of molecular imprinted polymers, and the highly sensitive properties of GQDs/B-g-C3N4 nanocomposite, a highly selective and sensitive analytical method was developed for BPA analysis. Firstly, GQDs/B-g-C3N4 nanocomposite was characterized by using microscopic, spectroscopic, and electrochemical techniques. This novel molecular imprinted electrochemical sensor for BPA detection demonstrated a linearity of 1.0 × 10−11–1.0 × 10−9 M and a low detection limit (LOD, 3.0 × 10−12 M). BPA-imprinted polymer on GQDs/B-g-C3N4 nanocomposite also showed good stability, repeatability and selectivity in food samples. Full article
(This article belongs to the Special Issue Novel Biosensors for Food Safety and Environmental Monitoring)
Show Figures

Figure 1

13 pages, 1338 KiB  
Article
A Sensitive Fluorescence Polarization Immunoassay for the Rapid Detection of Okadaic Acid in Environmental Waters
by Olga D. Hendrickson, Liliya I. Mukhametova, Elena A. Zvereva, Anatoly V. Zherdev and Sergei A. Eremin
Biosensors 2023, 13(4), 477; https://doi.org/10.3390/bios13040477 - 16 Apr 2023
Cited by 4 | Viewed by 2136
Abstract
In this study, a homogeneous fluorescence polarization immunoassay (FPIA) for the detection of hazardous aquatic toxin okadaic acid (OA) contaminating environmental waters was for the first time developed. A conjugate of the analyte with a fluorophore based on a fluorescein derivative (tracer) was [...] Read more.
In this study, a homogeneous fluorescence polarization immunoassay (FPIA) for the detection of hazardous aquatic toxin okadaic acid (OA) contaminating environmental waters was for the first time developed. A conjugate of the analyte with a fluorophore based on a fluorescein derivative (tracer) was synthesized, and its interaction with specific anti-OA monoclonal antibodies (MAbs) was tested. A MAbs–tracer pair demonstrated highly affine immune binding (KD = 0.8 nM). Under optimal conditions, the limit of OA detection in the FPIA was 0.08 ng/mL (0.1 nM), and the working range of detectable concentrations was 0.4–72.5 ng/mL (0.5–90 nM). The developed FPIA was approbated for the determination of OA in real matrices: river water and seawater samples. No matrix effect of water was observed; therefore, no sample preparation was required before analysis. Due to this factor, the entire analytical procedure took less than 10 min. Using a compact portable fluorescence polarization analyzer enables the on-site testing of water samples. The developed analysis is very fast, easy to operate, and sensitive and can be extended to the determination of other aquatic toxins or low-molecular-weight water or food contaminants. Full article
(This article belongs to the Special Issue Novel Biosensors for Food Safety and Environmental Monitoring)
Show Figures

Figure 1

Review

Jump to: Research

26 pages, 4515 KiB  
Review
Recent Advances in Aptasensing Strategies for Monitoring Phycotoxins: Promising for Food Safety
by Hamed Zahraee, Atiyeh Mehrzad, Khalil Abnous, Chih-Hsin Chen, Zahra Khoshbin and Asma Verdian
Biosensors 2023, 13(1), 56; https://doi.org/10.3390/bios13010056 - 29 Dec 2022
Cited by 7 | Viewed by 2365
Abstract
Phycotoxins or marine toxins cause massive harm to humans, livestock, and pets. Current strategies based on ordinary methods are long time-wise and require expert operators, and are not reliable for on-site and real-time use. Therefore, it is urgent to exploit new detection methods [...] Read more.
Phycotoxins or marine toxins cause massive harm to humans, livestock, and pets. Current strategies based on ordinary methods are long time-wise and require expert operators, and are not reliable for on-site and real-time use. Therefore, it is urgent to exploit new detection methods for marine toxins with high sensitivity and specificity, low detection limits, convenience, and high efficiency. Conversely, biosensors can distinguish poisons with less response time and higher selectivity than the common strategies. Aptamer-based biosensors (aptasensors) are potent for environmental monitoring, especially for on-site and real-time determination of marine toxins and freshwater microorganisms, and with a degree of superiority over other biosensors, making them worth considering. This article reviews the designed aptasensors based on the different strategies for detecting the various phycotoxins. Full article
(This article belongs to the Special Issue Novel Biosensors for Food Safety and Environmental Monitoring)
Show Figures

Figure 1

21 pages, 2422 KiB  
Review
Nanomaterial-Based Fluorescent Biosensor for Food Safety Analysis
by Jiaojiao Zhou, Yue Gui, Xuqin Lv, Jiangling He, Fang Xie, Jinjie Li and Jie Cai
Biosensors 2022, 12(12), 1072; https://doi.org/10.3390/bios12121072 - 23 Nov 2022
Cited by 11 | Viewed by 3253
Abstract
Food safety issues have become a major threat to public health and have garnered considerable attention. Rapid and effective detection methods are crucial for ensuring food safety. Recently, nanostructured fluorescent materials have shown considerable potential for monitoring the quality and safety of food [...] Read more.
Food safety issues have become a major threat to public health and have garnered considerable attention. Rapid and effective detection methods are crucial for ensuring food safety. Recently, nanostructured fluorescent materials have shown considerable potential for monitoring the quality and safety of food because of their fascinating optical characteristics at the nanoscale. In this review, we first introduce biomaterials and nanomaterials for food safety analysis. Subsequently, we perform a comprehensive analysis of food safety using fluorescent biosensors based on nanomaterials, including mycotoxins, heavy metals, antibiotics, pesticide residues, foodborne pathogens, and illegal additives. Finally, we provide new insights and discuss future approaches for the development of food safety detection, with the aim of improving fluorescence detection methods for the practical application of nanomaterials to ensure food safety and protect human health. Full article
(This article belongs to the Special Issue Novel Biosensors for Food Safety and Environmental Monitoring)
Show Figures

Figure 1

Back to TopTop