Computational Modeling Approaches for Optimizing Microencapsulation Processes: From Molecular Dynamics to CFD and FEM Techniques
Abstract
1. Introduction
2. Microencapsulation Techniques
3. Simulation and Modeling Approaches
4. Comparative Studies of Microencapsulation Processes in Pharmaceutical Industry
5. Application of Microencapsulation in Clinical Settings
6. Future Directions and Research Opportunities
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
Abbreviations
| MD | Molecular dynamics |
| CFD | Computational fluid dynamics |
| FEM | Finite element method |
| NSAIDs | Non-steroidal anti-inflammatory and anti-rheumatic agents |
| mPTP | Modulation of mitochondrial permeability transition pore |
References
- Das, E.D.; Sakibul, I.; Rahman, M.A.; Mohammad, G.A.; Saydar, R. Recent applications of microencapsulation techniques for delivery of functional ingredient in food products: A comprehensive review. Food Chem. Adv. 2025, 6, 100923. [Google Scholar] [CrossRef]
- Hay, T.O.; Nastasi, J.R.; Prakash, S.; Fitzgerald, M.A. Comparison of Gidyea gum, gum Arabic, and maltodextrin in the microencapsulation and colour stabilisation of anthocyanin-rich powders using freeze-drying and spray-drying techniques. Food Hydrocoll. 2025, 163, 111023. [Google Scholar] [CrossRef]
- Vasisht, N. Selection of Materials for Microencapsulation; Elsevier Inc.: Amsterdam, The Netherlands, 2014. [Google Scholar] [CrossRef]
- Yun, P.; Devahastin, S.; Chiewchan, N. Microstructures of encapsulates and their relations with encapsulation efficiency and controlled release of bioactive constituents: A review. Compr. Rev. Food Sci. Food Saf. 2021, 20, 1768–1799. [Google Scholar] [CrossRef]
- Bińkowska, W.; Szpicer, A.; Stelmasiak, A.; Wojtasik-Kalinowska, I.; Półtorak, A. Microencapsulation of Polyphenols and Their Application in Food Technology. Appl. Sci. 2024, 14, 11954. [Google Scholar] [CrossRef]
- Yan, C.; Kim, S.-R.; Ruiz, D.R.; Farmer, J.R. Microencapsulation for Food Applications: A Review. ACS Appl. Bio Mater. 2022, 5, 5497–5512. [Google Scholar] [CrossRef]
- Yan, C.; Kim, S.-R. Microencapsulation for Pharmaceutical Applications: A Review. ACS Appl. Bio Mater. 2024, 7, 692–710. [Google Scholar] [CrossRef] [PubMed]
- Ingale, O.S.; Pravin, B.P.; Pawase, P.A.; Shams, R.; Dash, K.K.; Bashir, O.; Roy, S. Enhancing Bioactive Stability and Applications: Microencapsulation in Fruit and Vegetable Waste Valorization; Springer Nature: Berlin/Heidelberg, Germany, 2025. [Google Scholar] [CrossRef]
- Jibrin, A.; Uzairu, A.; Mishra, V.K.; Shallangwa, G.A.; Abechi, S.E.; Srivastava, R.; Umar, A.B. In-silico design of potential mycobacterial membrane protein large 3 (MmpL3) inhibitors via 2D-QSAR, molecular docking, drug-likeness evaluation, and molecular dynamic simulation. Microbe 2025, 8, 100531. [Google Scholar] [CrossRef]
- AlRawashdeh, S.; Barakat, K.H. Applications of Molecular Dynamics Simulations in Drug Discovery. In Computational Drug Discovery and Design; Humana: New York, NY, USA, 2024; Volume 2714, pp. 127–141. [Google Scholar]
- Ji, J.; Wang, H.; Huang, S.F.; Li, Y.Y.; Tokumasu, T. Combining experimental and computational fluid dynamics simulation approaches to optimize cross-flow velocity conditions in anaerobic membrane bioreactors. J. Water Process Eng. 2025, 78, 108790. [Google Scholar] [CrossRef]
- Wang, X.; Xie, W.; Li, L.Y.; Zhu, J.; Xing, F. Molecular Simulation Study on Mechanical Properties of Microcapsule-Based Self-Healing Cementitious Materials. Polymers 2022, 14, 611. [Google Scholar] [CrossRef]
- Oxley, J. Overview of Microencapsulation Process Technologies; Elsevier Inc.: Amsterdam, The Netherlands, 2014. [Google Scholar] [CrossRef]
- Patil, S.; Bhargav, S. Advanced invasomal delivery system for enhanced topical application of bifonazole in fungal infections. Prospect. Pharm. Sci. 2025, 23, 102–110. [Google Scholar] [CrossRef]
- Bhushani, J.A.; Kurrey, N.K.; Anandharamakrishnan, C. Nanoencapsulation of green tea catechins by electrospraying technique and its effect on controlled release and in-vitro permeability. J. Food Eng. 2017, 199, 82–92. [Google Scholar] [CrossRef]
- Damerau, A.; Ogrodowska, D.; Banaszczyk, P.; Dajnowiec, F.; Tańska, M.; Linderborg, K.M. Baltic herring (Clupea harengus membras) oil encapsulation by spray drying using a rice and whey protein blend as a coating material. J. Food Eng. 2022, 314, 110769. [Google Scholar] [CrossRef]
- Thao, V.T.; Truong, V. Microencapsulation of agarwood (Aquilaria crassna) essential oil by spray drying. IOP Conf. Ser. Earth Environ. Sci. 2023, 1155, 012018. [Google Scholar] [CrossRef]
- Benelli, L.; Oliveira, W.P. Fluidized bed coating of inert cores with a lipid-based system loaded with a polyphenol-rich Rosmarinus officinalis extract. Food Bioprod. Process. 2019, 114, 216–226. [Google Scholar] [CrossRef]
- Jacobs, I.C. Atomization and Spray-Drying Processe; Elsevier Inc.: Amsterdam, The Netherlands, 2014. [Google Scholar] [CrossRef]
- Eghbal, N.; Choudhary, R. Complex coacervation: Encapsulation and controlled release of active agents in food systems. LWT 2018, 90, 254–264. [Google Scholar] [CrossRef]
- Nezamdoost-Sani, N.; Amiri, S.; Khaneghah, A.M. The application of the coacervation technique for microencapsulation bioactive ingredients: A critical review. J. Agric. Food Res. 2024, 18, 101431. [Google Scholar] [CrossRef]
- Movahed, M.D.; Sahari, M.A.; Barzegar, M. Microencapsulation of flaxseed oil by complex coacervation of with apricot tree (Prunus armeniaca L.) gum and low molecular chitosan: Formation and structural characterization. Appl. Food Res. 2024, 4, 100519. [Google Scholar] [CrossRef]
- Lan, Y.; Ohm, J.B.; Chen, B.; Rao, J. Microencapsulation of hemp seed oil by pea protein isolate−sugar beet pectin complex coacervation: Influence of coacervation pH and wall/core ratio. Food Hydrocoll. 2021, 113, 106423. [Google Scholar] [CrossRef]
- Chen, Y.; Wang, W.; Zhang, W.; Lan, D.; Wang, Y. Co-encapsulation of probiotics with acylglycerols in gelatin-gum arabic complex coacervates: Stability evaluation under adverse conditions. Int. J. Biol. Macromol. 2023, 242, 124913. [Google Scholar] [CrossRef]
- Schäfer, C.; Meyer, S.P.; Osswald, T.A. A novel extrusion process for the production of polymer micropellets. Polym. Eng. Sci. 2018, 58, 2264–2275. [Google Scholar] [CrossRef]
- McClements, D.J. Nanoparticle- and Microparticle-based Delivery Systems Encapsulation, Protection and Release of Active Compounds, 2nd ed.; CRC Press: Boca Raton, FL, USA, 2017. [Google Scholar] [CrossRef]
- Qizilbash, M.; del Valle, L.J.; Zabaleta, A.G. Modeling Polymer Microencapsulation Processes Using CFD and Population Balance Models. Appl. Sci. 2024, 14, 7807. [Google Scholar] [CrossRef]
- Mackenzie, R.; Booth, J.; Alexander, C.; Garnett, M.C.; Laughton, C.A. Multiscale Modeling of Drug–Polymer Nanoparticle Assembly Identifies Parameters Influencing Drug Encapsulation Efficiency. J. Chem. Theory Comput. 2015, 11, 2705–2713. [Google Scholar] [CrossRef]
- Gooneie, A.; Schuschnigg, S.; Holzer, C. A Review of Multiscale Computational Methods in Polymeric Materials. Polymers 2017, 9, 16. [Google Scholar] [CrossRef]
- Ricardo, F.; Pradilla, D.; Luiz, R.; Solano, O.A.A. A multi-scale approach to microencapsulation by interfacial polymerization. Polymers 2021, 13, 644. [Google Scholar] [CrossRef]
- Thakur, N.; Murthy, H. Simulation study of droplet formation in inkjet printing using ANSYS FLUENT. J. Phys. Conf. Ser. 2022, 2161, 012026. [Google Scholar] [CrossRef]
- Withers, P.J. Elastic and Thermoelastic Properties of Brittle Matrix Composites. In Reference Module in Materials Science and Materials Engineering; Elsevier: Amsterdam, The Netherlands, 2016. [Google Scholar] [CrossRef]
- Behera, B.K.; Hari, P.K.; Labanieh, A.R. Modelling the structure of woven fabrics. In Woven Textiles: Principles, Technologies and Applications; Woodhead Publishing Series in Textiles: Cambridge, UK, 2020; pp. 291–328. [Google Scholar] [CrossRef]
- Raju, B.; Hiremath, S.R.; Mahapatra, D.R. A review of micromechanics based models for effective elastic properties of reinforced polymer matrix composites. Compos. Struct. 2018, 204, 607–619. [Google Scholar] [CrossRef]
- Zhang, J.; Yan, Y.; Duarte, C.A.; Aragón, A.M. A Discontinuity-Enriched Finite Element Method (DE-FEM) for modeling quasi-static fracture growth in brittle solids. Comput. Methods Appl. Mech. Eng. 2025, 435, 117585. [Google Scholar] [CrossRef]
- Yang, W.; Gao, Z.; Li, S.; Deng, L.; Liang, B.; Kong, X.; Chen, X.; Liu, D.; Yang, B. Review of molecular dynamics simulation in extraction metallurgy. Comput. Mater. Sci. 2025, 258, 114111. [Google Scholar] [CrossRef]
- Gao, T.; Nan, Y.; Chen, S.; Li, C.; Mu, B.; Wang, J.; Li, H.; Piao, C.; Li, G. Identification of antioxidant peptides in low-salt dry-cured ham skin using molecular docking and molecular dynamics simulation. LWT 2025, 231, 118220. [Google Scholar] [CrossRef]
- Lindahl, E. Molecular dynamics simulations. In Molecular Modeling of Proteins, 2nd ed.; Springer Nature: Berlin/Heidelberg, Germany, 2014; pp. 3–26. [Google Scholar] [CrossRef]
- Vargas-Rubio, K.I.; Medrano-Roldán, H.; Reyes-Jáquez, D. Molecular dynamics simulation of a nanocluster obtained from the mining industry. Acta Univ. 2021, 31, 1–10. [Google Scholar] [CrossRef]
- Sun, H.; Wang, Y.; Ge, W.; Wang, H.; Ma, C. UPLC-Q-TOF-MSdriven network pharmacology coupled with molecular dynamics simulation to reveal the molecular mechanism of Lycium barbarum, L. flavonoids in regulating type 2 diabetes mellitus. Food Nutr. 2025, 1, 100038. [Google Scholar] [CrossRef]
- Wang, F.; Yang, W.; Peng, S.; Zhou, B. Quinoxaline derivatives in identifying novel VEGFR-2 inhibitors: A combined 3D-QSAR, molecular docking and molecular dynamics simulation. Comput. Biol. Med. 2025, 197, 110949. [Google Scholar] [CrossRef]
- Wang, L.; Chen, J.; Chen, W.; Ruan, Z.; Lou, H.; Yang, D.; Jiang, B. In silico prediction of bioequivalence of atorvastatin tablets based on GastroPlusTM software. BMC Pharmacol. Toxicol. 2023, 24, 69. [Google Scholar] [CrossRef] [PubMed]
- Okumu, A.; DiMaso, M.; Löbenberg, R. Computer simulations using GastroPlusTM to justify a biowaiver for etoricoxib solid oral drug products. Eur. J. Pharm. Biopharm. 2009, 72, 91–98. [Google Scholar] [CrossRef]
- Sun, F.; Lee, L.; Zhang, Z.; Wang, X.; Yu, Q.; Duan, X.; Chan, E. Preclinical pharmacokinetic studies of 3-deazaneplanocin A, a potent epigenetic anticancer agent, and its human pharmacokinetic prediction using GastroPlusTM. Eur. J. Pharm. Sci. 2015, 77, 290–302. [Google Scholar] [CrossRef]
- Gartner, T.E.; Jayaraman, A. Modeling and Simulations of Polymers: A Roadmap. Macromolecules 2019, 52, 755–786. [Google Scholar] [CrossRef]
- Vanommeslaeghe, K.; Hatcher, E.; Acharya, C.; Kundu, S.; Zhong, S.; Shim, J.; Darian, E.; Guvench, O.; Lopes, P.; Vorobyov, I.; et al. CHARMM general force field: A force field for drug-like molecules compatible with the CHARMM all-atom additive biological force fields. J. Comput. Chem. 2010, 31, 671–690. [Google Scholar] [CrossRef] [PubMed]
- Oostenbrink, C.; Villa, A.; Mark, A.E.; van Gunsteren, W.F. A biomolecular force field based on the free enthalpy of hydration and solvation: The GROMOS force-field parameter sets 53A5 and 53A6. J. Comput. Chem. 2004, 25, 1656–1676. [Google Scholar] [CrossRef] [PubMed]
- Sun, H. COMPASS: An ab Initio Force-Field Optimized for Condensed-Phase Applications Overview with Details on Alkane and Benzene Compounds. J. Phys. Chem. B 1998, 102, 7338–7364. [Google Scholar] [CrossRef]
- Rahmani, A.; Rezaei, A.; Khosravani, M.R. Molecular Dynamics Simulation in Tissue Engineering: Concepts, Tools, and Emerging Applications. Front. Bioeng. Biotechnol. 2024, 12, 15202223. [Google Scholar] [CrossRef]
- Singh, N.; Li, W.; Noid, W.G. Recent Advances in Coarse-Grained Models for Biomolecular Simulations. Phys. Chem. 2019, 20, 3774. [Google Scholar] [CrossRef]
- Gosecki, M.; Urbaniak, M.; Martinho, N.; Gosecka, M.; Zloh, M. Evaluation of Encapsulation Potential of Selected Star-Hyperbranched Polyglycidol Architectures: Predictive Molecular Dynamics Simulations and Experimental Validation. Molecules 2023, 28, 7308. [Google Scholar] [CrossRef] [PubMed]
- Berger, B.A.; Vietor, H.M.; Scott, D.W.; Lee, H.; Hashemipour, S.; Im, W.; Wittenberg, N.J.; Glover, K.J. Physicochemical Properties of Seed Oil Blends and Their Potential for the Creation of Synthetic Oleosomes with Modulated Polarities. ACS Omega 2024, 9, 43193–43202. [Google Scholar] [CrossRef]
- Zhang, Q.; Fan, W.; Shi, Y.; Tu, Z.; Hu, Y.; Zhang, J. Interaction between soy protein isolate/whey protein isolate and sucrose ester during microencapsulation: Multi-spectroscopy and molecular docking. LWT 2023, 188, 115363. [Google Scholar] [CrossRef]
- Valizadeh, Z.; Shahrouzi, J.R. Microencapsulation of cephalexin in alginate microspheres in a microfluidic system: Experimental and simulation study. Colloids Surfaces A Physicochem. Eng. Asp. 2025, 717, 136738. [Google Scholar] [CrossRef]
- Kumari, R.; Kumar, R.; Lynn, A. g_mmpbsa—A GROMACS Tool for High-Throughput MM-PBSA Calculations. J. Chem. Inf. Model. 2014, 54, 1951–1962. [Google Scholar] [CrossRef]
- Homeyer, N.; Gohlke, H. Free Energy Calculations by the Molecular Mechanics Poisson−Boltzmann Surface Area Method. Mol. Inform. 2012, 31, 114–122. [Google Scholar] [CrossRef]
- Genheden, S.; Ryde, U. The MM/PBSA and MM/GBSA methods to estimate ligand-binding affinities. Expert Opin. Drug Discov. 2015, 10, 449–461. [Google Scholar] [CrossRef]
- Wang, E.; Weng, G.; Sun, H.; Du, H.; Zhu, F.; Chen, F.; Wang, Z.; Hou, T. Assessing the performance of the MM/PBSA and MM/GBSA methods. 10. Impacts of enhanced sampling and variable dielectric model on protein–protein Interactions. Phys. Chem. Chem. Phys. 2019, 21, 18958–18969. [Google Scholar] [CrossRef]
- Wang, E.; Sun, H.; Wang, J.; Wang, Z.; Liu, H.; Zhang, J.Z.H.; Hou, T. End-Point Binding Free Energy Calculation with MM/PBSA and MM/GBSA: Strategies and Applications in Drug Design. Chem. Rev. 2019, 119, 9478–9508. [Google Scholar] [CrossRef] [PubMed]
- Badri, W.; Miladi, K.; Nazari, Q.A.; Greige-Gerges, H.; Fessi, H.; Elaissari, A. Encapsulation of NSAIDs for Inflammation Management: Overview Progress Challenges Prospects; Elsevier: Amsterdam, The Netherlands, 2016. [Google Scholar] [CrossRef]
- Iqbal, M.; Zafar, N.; Fessi, H.; Elaissari, A. Double emulsion solvent evaporation techniques used for drug encapsulation. Int. J. Pharm. 2015, 496, 173–190. [Google Scholar] [CrossRef] [PubMed]
- Barua, S.; Mitragotri, S. Challenges associated with penetration of nanoparticles across cell and tissue barriers: A review of current status and future prospects. Nano Today 2014, 9, 223–243. [Google Scholar] [CrossRef]
- Hijos-Mallada, G.; Sostres, C.; Gomollón, F. AINE, toxicidad gastrointestinal y enfermedad inflamatoria intestinal. Gastroenterol. Hepatol. 2021, 45, 215–222. [Google Scholar] [CrossRef] [PubMed]
- Marcén, B.; Sostres, C.; Lanas, A. AINE y riesgo digestivo-NSAID and gastrointestinal risk. Aten Primaria 2016, 48, 73–76. [Google Scholar] [CrossRef]
- Zhang, X.; Chau, L.Y.; Chan, H.W.; Weng, J.; Wong, K.W.; Chow, S.F.; Chow, A.H.L. Physical stability and in vivo brain delivery of polymeric ibuprofen nanoparticles fabricated by flash nanoprecipitation. Int. J. Pharm. 2021, 598, 120224. [Google Scholar] [CrossRef]
- Mora-Huertas, C.E.; Garrigues, O.; Fessi, H.; Elaissari, A. Nanocapsules prepared via nanoprecipitation and emulsification-diffusion methods: Comparative study. Eur. J. Pharm. Biopharm. 2012, 80, 235–239. [Google Scholar] [CrossRef]
- Fayez, S.M.; Elnahas, O.S.; Fayez, A.M.; El-Mancy, S.S. Coconut oil based self-nano emulsifying delivery systems mitigate ulcerogenic NSAIDs side effect and enhance drug dissolution: Formula optimization, in-vitro, and in-vivo assessments. Int. J. Pharm. 2023, 634, 122666. [Google Scholar] [CrossRef] [PubMed]
- Giri, T.K.; Choudhary, C.; Ajazuddin; Alexander, A.; Badwaik, H.; Tripathi, D.K. Prospects of pharmaceuticals and biopharmaceuticals loaded microparticles prepared by double emulsion technique for controlled delivery. Saudi Pharm. J. 2013, 21, 125–141. [Google Scholar] [CrossRef]
- Moretti, M.D.L.; Gavini, E.; Juliano, C.; Pirisino, G.; Giunchedi, P. Spray-Dried Microspheres Containing Ketoprofen Formulated into Capsules and Tablets. Available online: http://www.tandf.co.uk/journals (accessed on 4 May 2025).
- Pomázi, A.; Ambrus, R.; Sipos, P.; Szabó-Révész, P. Analysis of co-spray-dried meloxicam–mannitol systems containing crystalline microcomposites. J. Pharm. Biomed. Anal. 2011, 56, 183–190. [Google Scholar] [CrossRef]
- Castro, M.A.A.; Alric, I.; Brouillet, F.; Peydecastaing, J.; Fullana, S.G.; Durrieu, V. Spray-Dried Succinylated Soy Protein Microparticles for Oral Ibuprofen Delivery. AAPS PharmSciTech 2019, 20, 79. [Google Scholar] [CrossRef]
- del Arco, M.; Fernández, A.; Martín, C.; Rives, V. Release studies of different NSAIDs encapsulated in Mg, Al, Fe-hydrotalcites. Appl. Clay Sci. 2009, 42, 538–544. [Google Scholar] [CrossRef]
- Tomaro-Duchesneau, C.; Saha, S.; Malhotra, M.; Kahouli, I.; Prakash, S. Microencapsulation for the Therapeutic Delivery of Drugs, Live Mammalian and Bacterial Cells, and Other Biopharmaceutics: Current Status and Future Directions. J. Pharm. 2013, 2013, 103527. [Google Scholar] [CrossRef]
- Rattes, A.L.R.; Oliveira, W.P. Spray drying conditions and encapsulating composition effects on formation and properties of sodium diclofenac microparticles. Powder Technol. 2007, 171, 7–14. [Google Scholar] [CrossRef]
- Chen, S.; Dai, H.; Zhou, H. Research on microencapsulated aquatic feed preparation based on micro-jet spraying technology. Adv. Mater. Res. 2011, 143–144, 1071–1074. [Google Scholar] [CrossRef]
- Lu, A.; Xu, Z.; Zhao, Z.; Yan, Y.; Jiang, L.; Geng, J.; Jin, H.; Wang, X.; Liu, X.; Zhu, Y.; et al. Double Braking Effects of Nanomedicine on Mitochondrial Permeability Transition Pore for Treating Idiopathic Pulmonary Fibrosis. Adv. Sci. 2024, 11, 2405406. [Google Scholar] [CrossRef]
- Hafizah, F.; Yusop, M.; Fairuz, S.; Manaf, A.; Hamzah, F. Preservation of Bioactive Compound via Microencapsulation. Chem. Eng. Res. Bull. 2017, 19, 50–56. [Google Scholar] [CrossRef]
- Aw, M.S.; Simovic, S.; Yu, Y.; Addai-Mensah, J.; Losic, D. Porous silica microshells from diatoms as biocarrier for drug delivery applications. Powder Technol. 2012, 223, 52–58. [Google Scholar] [CrossRef]
- Ourani-Pourdashti, S.; Azadi, A. Pollens in therapeutic/diagnostic systems and immune system targeting. J. Control. Release 2021, 340, 308–317. [Google Scholar] [CrossRef]
- Taha, N.F.; Dyab, A.K.F.; Emara, L.H.; Meligi, N.M. Microencapsulation of Diclofenac Sodium into natural Lycopodium clavatum spores: In vitro release and gastro-ulcerogenic evaluations. J. Drug Deliv. Sci. Technol. 2022, 71, 103278. [Google Scholar] [CrossRef]
- Lamela-Gómez, I.; Luzardo-Álvarez, A. Indomethacin microencapsulation by coaxial ultrasonic atomization intended for intraarticular administration. J. Drug Deliv. Sci. Technol. 2025, 109, 107002. [Google Scholar] [CrossRef]
- Zheng, C.; Li, M.; Ding, J. Challenges and Opportunities of Nanomedicines in Clinical Translation. BIO Integr. 2021, 2, 57–60. [Google Scholar] [CrossRef]
- Younis, M.A.; Tawfeek, H.M.; Abdellatif, A.A.H.; Abdel-Aleem, J.A.; Harashima, H. Clinical translation of nanomedicines: Challenges, opportunities, and keys. Adv. Drug Deliv. Rev. 2022, 181, 114083. [Google Scholar] [CrossRef] [PubMed]
- Karaman, D.; Williams, K.; Phelps, J.; La Boucan, F.; Lewandowski, G.; O’gRady, K.; Yu, B.; Willerth, S.M. Microspheres for 3D bioprinting: A review of fabrication methods and applications. Front. Bioeng. Biotechnol. 2025, 13, 1551199. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Wu, M.; Chen, W.; Liu, H.; Tan, D.; Shen, S.; Lei, Y.; Xue, L. 3D printing of bioinspired compartmentalized capsular structure for controlled drug release. J. Zhejiang Univ. B 2021, 22, 1022–1033. [Google Scholar] [CrossRef]
- Ma, Z.; Bitter, J.H.; Boom, R.M.; Nikiforidis, C.V. Encapsulation of cannabidiol in hemp seed oleosomes. Food Res. Int. 2024, 195, 114948. [Google Scholar] [CrossRef]
- Subroto, E.; Andoyo, R.; Indiarto, R. Solid Lipid Nanoparticles: Review of the Current Research on Encapsulation and Delivery Systems for Active and Antioxidant Compounds. Antioxidants 2023, 12, 633. [Google Scholar] [CrossRef]


| Method | Advantages | Drawbacks | References |
|---|---|---|---|
| Nanoprecipitation | Simple, fast, economic, achievement of reproducible submicron particle size with narrow distribution without external energy source | Not efficient to water soluble drugs, organic solvents use | [65,66] |
| Emulsion -diffusion | The employed solvent is suitable in the pharmaceutical field, Suitable encapsulation technique for both lipophilic and hydrophilic molecules | Three liquid phases are needed, organic solvents use | [66] |
| Emulsification | The method is relatively simple, appropriate in controlling process parameters. The process efficiently encapsulates highly water-soluble compounds, including proteins and peptides. | Thermodynamically double emulsions are unstable systems and they have a strong tendency for coalescence, flocculation and creaming. The majority of double emulsions contain relatively large droplets, which cannot withstand storage regimes and have a strong trend to release the entrapped matter in an uncontrolled mode, organic solvents use | [67,68] |
| Spray Drying | Enhances the drug’s bioavailability, solubility, as well as its pharmacokinetic and pharmacodynamic profiles | The use of elevated temperatures may lead to the denaturation of the encapsulating matrix material | [69,70,71] |
| Layered double hydroxides | It provides high yield percentages and enhances bioavailability | Numerous factors continue to influence both the duration and the release rate of the encapsulated drug | [72] |
| Applications | Innovation | Advantage | References |
|---|---|---|---|
| Treatment of idiopathic pulmonary fibrosis (modulation of mitochondrial permeability transition pore mPTP) | Lipid—siRNA nanoparticles for dual inhibition of mPTP | Higher therapeutic efficacy and stability compared to commercial formulations | [76] |
| Preservation of bioactive compounds (Plan extract, essential oils, food ingredients) | Review and use of microencapsulation techniques (spray—drying, complex coacervation, etc.) to from a functional core wall barrier protecting sensitive actives | Extended shelf—life, improved oxidative stability and protection form degradation (light, moisture, heat) compared to non—encapsulated forms | [77] |
| Porous diatom biosilica for drug delivery | Porous silica microshells with high surface area for loading and controlled release | Higher drug—loading capacity and improved release kinetics compared with less—porous synthetic particles; biocompatible natural source | [78] |
| Pollens as therapeutic/diagnostic systems and immune targeting platforms | Use of cleaned/Functionalized pollen grains as natural microcarriers and platforms for immune targeting and therapeutic/diagnostic delivery | Biocompatibility, content protection and immunomodulatory potential vs. synthetic carriers | [79] |
| Microencapsulation of diclofenac sodium into natural Lycopodium clavatum spores | Use of natural spores as carriers for controlled release | Reduced gastrointestinal damage and controlled release vs. conventional formulations | [80] |
| Encapsulation of indomethacin by coaxial ultrasonic atomization for intra-articular administration | Polymeric microcapsules for intra-articular administration | Localized administration, lower systemic dose and reduce side effects | [81] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vargas-Rubio, K.I.; Delgado, E.; Cabrales-Arellano, C.P.; Gamboa-Gómez, C.I.; Reyes-Jáquez, D. Computational Modeling Approaches for Optimizing Microencapsulation Processes: From Molecular Dynamics to CFD and FEM Techniques. Biophysica 2025, 5, 49. https://doi.org/10.3390/biophysica5040049
Vargas-Rubio KI, Delgado E, Cabrales-Arellano CP, Gamboa-Gómez CI, Reyes-Jáquez D. Computational Modeling Approaches for Optimizing Microencapsulation Processes: From Molecular Dynamics to CFD and FEM Techniques. Biophysica. 2025; 5(4):49. https://doi.org/10.3390/biophysica5040049
Chicago/Turabian StyleVargas-Rubio, Karen Isela, Efrén Delgado, Cristian Patricia Cabrales-Arellano, Claudia Ivette Gamboa-Gómez, and Damián Reyes-Jáquez. 2025. "Computational Modeling Approaches for Optimizing Microencapsulation Processes: From Molecular Dynamics to CFD and FEM Techniques" Biophysica 5, no. 4: 49. https://doi.org/10.3390/biophysica5040049
APA StyleVargas-Rubio, K. I., Delgado, E., Cabrales-Arellano, C. P., Gamboa-Gómez, C. I., & Reyes-Jáquez, D. (2025). Computational Modeling Approaches for Optimizing Microencapsulation Processes: From Molecular Dynamics to CFD and FEM Techniques. Biophysica, 5(4), 49. https://doi.org/10.3390/biophysica5040049

