Protein Polarimetry, Perfected: Specific Rotation Measurement for the Refracto-Polarimetric Detection of Cryptic Protein Denaturation
Abstract
1. Introduction
Current State of Protein Polarimetry: Instrumentation and Data
- (i)
- (ii)
- (iii)
- Ligands (such as bilirubin bound to albumin) may shift the rotation depending on the amount present [29].
- (iv)
- Glycans will most likely shift the rotation to the right (as evident for α-glycoprotein and orosomucoid).
- (v)
- The denaturation of a globular protein, both reversibly by chaotropic agents [29,30] or irreversibly by acid or alkali [31], organic solvents [21], disulfide reduction [20], radiolysis [32,33], UV photolysis [30,33,34,35,36], heat [30,37,38,39], heat and acid or alkali [40], or pressure [41], shifts the rotation; in the case of reduction, to the right [20], with all other mechanisms to the left, to about −100° at most.
2. Materials and Methods
2.1. Polarimetry
2.2. Refractometry
2.3. Analysis of Cystine
2.4. Analysis of Protein Solutions
- A set of 14 structural model proteins [47];
- A set of purified proteins:
- o
- Human serum albumin ultra-diafiltration concentrate from fractionation by cold ethanol (citrate-depleted by addition of caprylate before the ultra-diafiltration step, before pasteurization with no further stabilizers added);
- o
- Recombinant human serum albumin from rice (Sigma-Aldrich, solid powder);
- o
- Bovine serum albumin (Carl Roth, solid powder);
- o
- Bovine serum albumin, defatted (Sigma-Aldrich, solid powder);
- o
- α1-proteinase inhibitor, plasma-derived by cold ethanol fractionation and chromatographic purification, formulated in phosphate-buffered saline (concentrated by centrifugal ultrafiltration);
- o
- Immunoglobulin G, plasma-derived by cold ethanol fractionation and chromatographic purification, formulated in 0.25 M glycine;
- o
- Immunoglobulin G, plasma-derived by cold ethanol fractionation and chromatographic purification, formulated in 0.25 M proline (specified);
- o
- mAb 1, monoclonal IgG1 antibody in a citrate-phosphate-buffered saline formulation containing 45 mM histidine;
- o
- mAb 2, monoclonal IgG1 antibody in a buffered formulation containing 50 mM histidine, 125 mM arginine and 5 mM methionine;
- o
- mAb 3, monoclonal IgG1 antibody formulated in 0.25 M glycine, pH = 5.
2.5. Thermal Denaturation Measurements
3. Results and Discussion
3.1. Analysis of Cystine
3.2. Analysis of Proteins
3.3. Short-Time Thermal Denaturation Measurements
3.4. Long-Time Thermal Denaturation Measurements
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A
Protein | Solvent | T/°C | [α]D/° | Ref. |
---|---|---|---|---|
serum α-glycoprotein | 25 | −23 | [59,60] | |
orosomucoid | water, pH = 5.8 | 25 | −21.8–−22.2 | [61] |
colostrum M−1 glycoprotein (human) | 20 | −48 | [62] | |
ovalbumin (chicken) | water | −35.5 | [31] | |
ovalbumin (chicken) | −25.2–−42.8 | [63] | ||
ovalbumin (chicken) | −28.14–−39.23 | [64] | ||
ovalbumin (chicken) | 15–17 | −30.7 | [65] | |
ovalbumin (chicken) | −28.60–−29.53 | [66] | ||
ovalbumin (chicken) | −30.3–−31.5 | [67] | ||
ovalbumin (chicken) | −30.1 | [68] | ||
ovalbumin (chicken) | 1% in water | 20 | −37 | [69] |
ovalbumin (chicken) | 25 | −30 | [59,60] | |
conalbumin (chicken) | −36–−39 | [66] | ||
ovomucoid (chicken) | −61.10–−61.38 | [66] | ||
lactalbumin (bovine) | water | −36.6–−38.0 | [70] | |
β-lactoglobulin (bovine) | 25 | −32 | [59,60] | |
chymotrypsinogen | 0.1 M acetic acid | −76 | [71] | |
chymotrypsinogen (bovine) | 0.2 M NaCl, pH = 6.1 | 0 | −78 | [72] |
chymotrypsinogen | 0.1 M KCl, pH = 7 | 25 | −73.2 | [73] |
transferrin | pH = 7.6 | 25 | −44.5 | [61] |
transferrin | −53 | [74] | ||
fibrinogen (equine) | NaCl | −52.5 | [75] | |
fibrinogen (equine) | −50.5 | [76] | ||
fibrinogen (bovine) | 25 | −49.4 | [77] | |
globin (bovine) (apo-hemoglobin) | water | −13 | [21] | |
globin (equine) (apo-hemoglobin) | water | −18 | [21] | |
γ-globulin | buffer, pH = 7.8 | 25 | −51.2 | [78] |
γ-globulin | glycine buffer, Γ/2 = 0.1 | 25 | −45–−52 | [61] |
γ-globulin | 0.15 M NaCl | 22 | −52.1–−54.6 | [79] |
serum albumin | water | −56 | [31] | |
serum albumin | sat, NaCl | −64 | [31] | |
serum albumin | −62.6–−64.4 | [6,7] | ||
serum albumin | 3rd recrystallization | −62.6 | [70] | |
serum albumin | further purified | −60.1 | [70] | |
serum albumin | crystallized | −61–−61.2; −64 | [80] | |
serum albumin (equine) | crystallized | 18 | −62.8 | [68] |
serum albumin (equine) | ammonium sulfate-fractionated, 1% in H2O | 20 | −54 | [69] |
serum albumin (bovine) | ammonium sulfate-fractionated | 20.5 | −63.0 | [81] |
serum albumin (human) | water, pH = 5.1 | 26 | −62.2 | [82] |
serum albumin (human) | 25–26 | −64.5 | [83] | |
serum albumin (human) | 25 | −63 | [59,60] | |
clupein (herring sperm) | 25 | −99.7 | [84] | |
collagen (carp swim bladder) | citrate buffer, pH = 3.7 | 10 | −350 ± 30 | [22] |
collagen (carp swim bladder) | 1 M acetic acid | −357 | [25] | |
collagen (rabbit skin) | 0.134 M phosphate buffer, pH = 7.4 | 0 | −377 | [23,24] |
glutenin (wheat) | 0.1 M acetic acid | 27 | −102 | [85] |
gliadin (wheat) | dilute acetic acid | −111 | [8] | |
gliadin (wheat) | 0.01 M acetic acid | 27 | −114 | [85] |
hordein (barley) | dilute acetic acid | −130 | [8] | |
secalin (rye) | dilute acetic acid | −144 | [8] | |
edestin (hemp seed) | crystallized in 10% NaCl | −41.3 | [86] | |
excelsin (Brazil nut kernel) | crystallized in 10% NaCl | −42.94 | [86] | |
globulin (flax seed) | crystallized in 10% NaCl | −43.53 | [86] | |
globulin (squash seed) | crystallized in 10% NaCl | −38.73 | [86] | |
amandin (almond kernel) | 10% NaCl | −56.44 | [86] | |
corylin (hazelnut kernel) | 10% NaCl | −43.09 | [86] | |
globulin (English walnut kernel) | 10% NaCl | −45.21 | [86] | |
globulin (American black walnut kernel) | 10% NaCl | −44.43 | [86] | |
phaseolin (horse bean seed) | crystallized in 10% NaCl | −41.46 | [86] | |
legumin (kidney bean seed) | 10% NaCl | −44.09 | [86] |
λ/nm | Albumin (°) | “Pseudoglobulin” (°) | “Euglobulin” (°) |
---|---|---|---|
435.9 | −151.5 | −118.2 | −105.2 |
546.1 | −78.1 | −68.7 | −61.2 |
578 | −67.0 | −59.8 | −54.0 |
660 | −47.3 | −43.1 | −39.4 |
589.3 (calc.) | −63.5 | −52.5 | −57.6 |
ratio 436/589 | 2.38 | 2.25 | 1.83 |
References
- Kelly, S.M.; Jess, T.J.; Price, N.C. How to study proteins by circular dichroism. Biochim. Biophys. Acta 2005, 1751, 119–139. [Google Scholar] [CrossRef]
- Webster, S. Predicting long-term storage stability of therapeutic proteins. Pharm. Technol. Eur. 2013, 25, 30–36. [Google Scholar]
- Le Basle, Y.; Chennell, P.; Tokhadze, N.; Astier, A.; Sautou, V. Physicochemical stability of monoclonal antibodies: A review. J. Pharm. Sci. 2020, 109, 169–190. [Google Scholar] [CrossRef] [PubMed]
- Sert, F.; Hız, D.; Gülmez, M.; Cankurtaran, S.E.; Kayalan, C.I.; Kurt, H.; Yüce, M. Temperature and pH-dependent behaviors of mAb drugs: A case study for trastuzumab. Sci. Pharm. 2022, 90, 21. [Google Scholar] [CrossRef]
- Anderle, H.; Weber, A. Rediscovery and revival of analytical refractometry for protein determination: Recombining simplicity with accuracy in the digital era. J. Pharm. Sci. 2016, 105, 1097–1103. [Google Scholar] [CrossRef]
- Landolt, H. Das Optische Drehungsvermögen Organischer Substanzen und Dessen Praktische Anwendungen; F. Vieweg und Sohn: Braunschweig, Germany, 1898. [Google Scholar]
- Landolt, H. The Optical Rotating Power of Organic Substances and Its Practical Applications, 2nd ed.; The Chemical Publishing Co.: Easton, PA, USA, 1902. [Google Scholar]
- Kjeldahl, J. Undersøgelser over the optiske Forhold hos nogle Planteæggehvidestoffer [Investigations on the optical properties of some vegetable proteins]. Forhandl. Skandinav. Naturforsk. 1892, 14, 385–390. [Google Scholar]
- Rudolph, H. Photoelectric polarimeter attachment. J. Opt. Soc. Am. 1955, 45, 50–59. [Google Scholar] [CrossRef]
- Cary, H.; Hawes, R.C.; Hooper, P.B.; Duffield, J.J.; George, K.P. A recording spectropolarimeter. Appl. Opt. 1964, 3, 329–337. [Google Scholar] [CrossRef]
- Zadnik, V.; Scott, J.; Megargle, R.; Kerkay, J.; Pearson, K. A microcomputer automated recording spectropolarimeter. J. Autom. Chem. 1979, 1, 206–213. [Google Scholar]
- Emmerich, A.; Keitel, J.; Mösche, M.; Seiler, W. Rotationsdispersion von Saccharoselösungen und Quarz im nahen Infrarot [Rotation dispersion of sucrose solutions and of quartz in the near infrared]. PTB Mitteil. 1998, 108, 293–302. [Google Scholar]
- Côté, D.; Vitkin, I.A. Robust concentration determination of optically active molecules in turbid media with validated three-dimensional polarization sensitive Monte Carlo calculations. Opt. Express 2005, 13, 148–163. [Google Scholar] [CrossRef]
- Breaven, G.H.; D’Albis, A.; Gratzer, W.B. The Interaction of bilirubin with human serum albumin. Eur. J. Biochem. 1973, 33, 500–509. [Google Scholar] [CrossRef]
- Harrington, W.F.; Schellman, J.A. The effect of concentrated solutions of lithium bromide on the configuration of polypeptides and proteins. Compt. Rend. Trav. Lab. Carlsberg Ser. Chim. 1957, 30, 167–181. [Google Scholar]
- Greenberg, D.M. Optical properties of amino acids and proteins. In The Chemistry of the Amino Acids and Proteins with Addendum; Schmidt, C., Ed.; C.C. Thomas: Springfield, IL, USA, 1944; pp. 1033–1290. [Google Scholar]
- Hayashi, K.; Fujii, Y.; Saito, R.; Kanao, H.; Hino, T. The influence of measurement parameters on the specific rotation of amino acids. Agric. Biol. Chem. 1966, 30, 1221–1237. [Google Scholar]
- Hewitt, L.F. Optical rotatory power and dispersion of proteins. Biochem. J. 1927, 21, 216–224. [Google Scholar] [CrossRef]
- Schellman, C.; Schellman, J.A. The optical rotatory power of proteins and polypeptides. VII. Optical rotation and protein configuration. Compt. Rend. Trav. Lab. Carlsberg Ser. Chim. 1958, 30, 463–500. [Google Scholar]
- Würz, H.; Haurowitz, F. Changes in the optical rotation of proteins after cleavage of the disulfide bonds. J. Am. Chem. Soc. 1961, 83, 280–283. [Google Scholar] [CrossRef]
- Holden, H.; Freeman, M. On globin and denatured globin. Aust. J. Exp. Biol. Med. 1928, 5, 213–222. [Google Scholar] [CrossRef]
- Cohen, C. Optical rotation and helical polypeptide chain configuration in collagen and gelatin. J. Biophys. Biochem. Cyt. 1955, 1, 203–214. [Google Scholar] [CrossRef]
- Fessler, J.H. Some properties of neutral-salt-soluble collagen. 1. Biochem. J. 1960, 76, 452–463. [Google Scholar] [CrossRef]
- Fessler, J.H. Some properties of neutral-salt-soluble collagen. 2. Biochem. J. 1960, 76, 463–471. [Google Scholar] [CrossRef]
- Venkataraman, S. Studies on collagen. Proc. Natl. Acad. Sci. India Sect. A 1960, 52, 80–86. [Google Scholar] [CrossRef]
- Wieser, H.; Seilmeier, W.; Belitz, H.-D. Klassifizierung der Proteinkomponenten des Weizenklebers [Classification of the protein components of wheat gluten]. Getreide Mehl Brot 1991, 45, 35–38. [Google Scholar]
- Tatham, A.S.; Shewry, P.R. The S-poor prolamins of wheat, barley and rye. J. Cereal Sci. 1995, 22, 1–16. [Google Scholar] [CrossRef]
- Blanch, E.W.; Kasarda, D.D.; Hecht, L.; Nielsen, K.; Barron, L.D. New insight into the solution structures of wheat gluten proteins from Raman optical activity. Biochemistry 2003, 42, 5665–5673. [Google Scholar] [CrossRef]
- Scholtan, W.; Gloxhuber, C. Die Eiweißbindung von Bilirubin und Bromsulfalein [The protein binding of bili-rubin and bromo sulfaleine]. Arzneim. Forsch. 1966, 16, 520–528. [Google Scholar]
- Clark, J.H. Denaturation changes in egg albumin with urea, radiation, and heat. J. Gen. Physiol. 1943, 27, 101–111. [Google Scholar] [CrossRef]
- Hoppe-Seyler, F. Beiträge zur Kenntnis der Albuminstoffe [Contributions to the knowledge on albuminoids]. Z. Phys. Chem. 1864, 7, 737–746. [Google Scholar]
- Abderhalden, E.; Haas, R. Weitere Beobachtungen über das physikalische Verhalten von Aminosäuren, Polypeptiden, 2, 5-Dioxopiperazinen in verschiedenen tautomeren Formen und von Proteinen [Further observations on the physical behavior of amino acids, polypeptides, 2, 5-dioxopiperazins in various tautomeric conformations, and of proteins]. Hoppe-Seylers Z. Physiol. Chem. 1926, 155, 200–205. [Google Scholar]
- Spiegel-Adolf, M. Neuere Ergebnisse über Eiweissveränderungen durch ultraviolette, Radium- und Röntgenstrahlen [Recent results on protein changes by ultraviolet, radium, and X-rays]. Ergebn. Physiol. 1928, 27, 832–863. [Google Scholar] [CrossRef]
- Chalupecký, H. Der Einfluß der ultravioletten Strahlen auf die Augenlinse [The impact of ultraviolet rays on the ocular Lens]. Wien. Med. Wochenschr. 1913, 32, 1986–1990. [Google Scholar]
- Stedman, H.L.; Mendel, L.B. The effects of radiations from a quartz mercury vapor arc upon some properties of proteins. Am. J. Physiol. 1926, 77, 199–210. [Google Scholar] [CrossRef]
- Young, E.G. The coagulation of protein by sunlight. Proc. R. Soc. B 1922, 93, 235–248. [Google Scholar]
- Barker, H.A. The optical rotatory power of heat-denatured egg albumin. J. Biol. Chem. 1933, 103, 1–12. [Google Scholar] [CrossRef]
- Kauzmann, W.; Simpson, R.B. The kinetics of protein denaturation. III. The optical rotations of serum albumin, β-lactoglobulin and pepsin in urea solutions. J. Am. Chem. Soc. 1953, 75, 5154–5157. [Google Scholar]
- Sawyer, W.H.; Norton, R.S.; Nichol, L.W.; McKenzie, G.H. Thermodenaturation of bovine β-lactoglobulin: Kinetics and the introduction of β-structure. Biochim. Biophys. Acta 1971, 243, 19–30. [Google Scholar] [CrossRef]
- Pauli, W.; Kölbl, W. Uber Beziehungen zwischen kolloiden und konstitutiven Änderungen einiger Proteine II. Die Wärmedenaturierung der Albumine außerhalb des isoelektrischen Bereiches [On the relationships between colloidal and constitutive changes of some proteins II. The heat denaturation of albumins outside the isoelectric range]. Kolloid-Beihefte 1935, 41, 417–460. [Google Scholar] [CrossRef]
- Suzuki, C.; Suzuki, K. The protein denaturation by high pressure: Changes of optical rotation and susceptibility to enzymic proteolysis with ovalbumin denatured by pressure. J. Biochem. 1962, 52, 67–71. [Google Scholar] [CrossRef]
- Kongraksawech, T.; Vázquez-Landaverde, P.; Rodrigo-Garcia, J.; Torres, J.A.; Huerta-Ruelas, J. Optical techniques to determine thermal effects on proteins. Int. J. Food Sci. Technol. 2008, 43, 1922–1928. [Google Scholar] [CrossRef]
- Lloyd, D.J. Notes on some properties of dialysed gelatin. Biochem. J. 1922, 16, 530–540. [Google Scholar] [CrossRef]
- OIML—The International Organization of Legal Metrology. Automated Refractometers: Methods and Means of Verification. Available online: https://www.oiml.org/en/files/pdf_r/r142-e08.pdf (accessed on 30 July 2025).
- Zhao, H.; Brown, P.H.; Schuck, P. On the distribution of protein refractive index increments. Biophys. J. 2011, 100, 2309–2317. [Google Scholar] [CrossRef]
- Cohn, E.J.; McMeekin, T.L.; Blanchard, M.H. Studies in the physical chemistry of amino acids, peptides, and related substances: XI. The solubility of cystine in the presence of ions and another dipolar ion. J. Gen. Physiol. 1938, 21, 651–663. [Google Scholar] [CrossRef] [PubMed]
- Schwaighofer, A.; Anderle, H.; Lemmerer, M. Comparison of spectroscopic techniques for determination of protein secondary structure. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2025, 340, 126345. [Google Scholar] [CrossRef] [PubMed]
- Andrews, J.C. The optical activity of cystine. J. Biol. Chem. 1925, 65, 147–159. [Google Scholar] [CrossRef]
- Mörner, K.A.H. Cystin, ein Spaltungsprodukt der Hornsubstanz [Cystine, a cleavage product of keratinous matter]. Hoppe-Seylers Z. Physiol. Chem. 1899, 28, 595–615. [Google Scholar] [CrossRef]
- Sano, K. Über die Löslichkeit der Aminosäuren bei variierter Wasserstoffzahl [On the solubility of amino acids with changes of the pH]. Biochem. Z. 1926, 168, 14–33. [Google Scholar]
- Okabe, L. Studies on the solubility of cystine under various conditions, and on a new method of cystine preparation. J. Biochem. 1928, 8, 441–457. [Google Scholar] [CrossRef]
- Aoki, K.; Hiramatsu, K.; Kimura, K.; Kaneshina, S.; Nakamura, Y.; Sato, K. Heat denaturation of bovine serum albumin. I: Analysis by acrylamide-gel electrophoresis. Bull. Inst. Chem. Res. Kyoto Univ. 1969, 47, 274–282. [Google Scholar]
- Akazawa-Ogawa, Y.; Nagai, H.; Hagihara, Y. Heat denaturation of the antibody, a multi-domain protein. Biophys. Rev. 2018, 10, 255–258. [Google Scholar] [CrossRef]
- Mainer, G.; Dominguez, E.; Randrup, M.; Sanchez, L.; Calvo, M. Effect of heat treatment on anti-rotavirus activity of bovine colostrum. J. Dairy Res. 1999, 66, 131–137. [Google Scholar] [CrossRef] [PubMed]
- Indyk, H.E.; Williams, J.W.; Patel, H.A. Analysis of denaturation of bovine IgG by heat and high pressure using an optical biosensor. Int. Dairy J. 2008, 18, 359–366. [Google Scholar] [CrossRef]
- Vermeer, A.W.P.; Norde, W. The thermal stability of immunoglobulin: Unfolding and aggregation of a multi-domain protein. Biophys. J. 2000, 78, 394–404. [Google Scholar] [CrossRef] [PubMed]
- Rosenqvist, E.; Jøssang, T.; Feder, J. Thermal properties of human IgG. Mol. Immunol. 1987, 24, 495–501. [Google Scholar] [CrossRef]
- Ma, G.J.; Ferhan, A.R.; Jackman, J.A.; Cho, N.-J. Conformational flexibility of fatty acid-free bovine serum albumin proteins enables superior antifouling coatings. Commun. Mater. 2020, 1, 45. [Google Scholar] [CrossRef]
- Jirgensons, B. Further studies on rotatory dispersion and structure of globular proteins. Makromol. Chem. 1961, 44, 123–137. [Google Scholar] [CrossRef]
- Jirgensons, B. Optical rotatory dispersion of globular proteins. Tetrahedron 1961, 13, 166–175. [Google Scholar] [CrossRef]
- Jirgensons, B. Optical rotation and viscosity of native and denatured proteins. IX. Some plasma proteins at various pH. Arch. Biochem. Biophys. 1957, 71, 148–161. [Google Scholar] [PubMed]
- Nichols, J.H.; Bezkorovainy, A. Isolation and characterization of a glycoprotein from human colostrum. Biochem. J. 1973, 135, 875–880. [Google Scholar] [CrossRef]
- Bondzynski, S.; Zoja, L. Über die fraktionierte Krystallisation des Eieralbumins [On the fractionated crystallization of egg albumin]. Hoppe-Seylers Z. Physiol. Chem. 1894, 19, 1–18. [Google Scholar]
- Osborne, T.B. Egg albumin. J. Am. Chem. Soc. 1899, 21, 477–485. [Google Scholar] [CrossRef]
- Hopkins, F.G. On the separation of a pure albumin from egg-white. J. Physiol. 1900, 25, 306–330. [Google Scholar] [CrossRef]
- Osborne, T.B.; Campbell, G.F. The protein constituents of egg white. J. Am. Chem. Soc. 1900, 22, 422–450. [Google Scholar] [CrossRef]
- Willcock, E.G. Crystalline egg-albumin. J. Physiol. 1908, 37, 27–36. [Google Scholar] [CrossRef] [PubMed]
- Young, E.G. On the optical rotatory power of crystalline ovalbumin and serum albumin. Proc. R. Soc. B 1922, 93, 15–34. [Google Scholar]
- Pauli, W.; Weiss, R. Uber Beziehungen zwischen kolloiden und konstitutiven Änderungen einiger Proteine I [On the relationships between colloidal and constitutive changes of some proteins I]. Biochem. Z. 1931, 233, 381–443. [Google Scholar]
- Sebelien, J. Beitrag zur Kenntnis der Eiweißkörper der Kuhmilch [Contribution to the knowledge of protein bodies in bovine milk]. Hoppe-Seylers Z. Physiol. Chem. 1885, 9, 445–464. [Google Scholar]
- Northrop, J.H.; Kunitz, M.; Herriott, R.M. Crystalline Enzymes, 2nd ed.; Columbia University Press: New York, NY, USA, 1948. [Google Scholar]
- Neurath, H.; Rupley, J.A.; Dreyer, W.J. Structural changes in the activation of chymotrypsinogen and trypsinogen. Effect of urea on chymotrypsinogen and delta-chymotrypsin. Arch. Biochem. Biophys. 1956, 65, 243–259. [Google Scholar] [CrossRef]
- Raval, D.N.; Schellman, J.A. The activation of chymotrypsinogen optical rotation studies. Biochim. Biophys. Acta 1965, 107, 463–470. [Google Scholar] [CrossRef]
- Miller, R.J.; Bezkorovainy, A. The effects of irradiation on human serum transferrin. Radiat. Res. 1973, 54, 212–221. [Google Scholar] [CrossRef] [PubMed]
- Mittelbach, F. ber die spezifische Drehung des Fibrinogens [On the specific rotation of fibrinogen]. Hoppe-Seylers Z. Physiol. Chem. 1894, 19, 289–298. [Google Scholar]
- Cramer, C.D. Über das sogenannte Thrombosin Lilienfeld’s [On the so-called thrombosin by Lilienfeld]. Hoppe-Seylers Z. Physiol. Chem. 1897, 23, 74–86. [Google Scholar] [CrossRef]
- Mihalyi, E. Physicochemical studies of bovine fibrinogen III. Optical rotation of the native and denatured molecule. Biochim. Biophys. Acta 1965, 102, 487–499. [Google Scholar] [PubMed]
- Jirgensons, B.; Sirotzky, S. Optical rotation and viscosity of native and denatured proteins. IV. Fractions of serum albumin and γ-globulin from various sources. Arch. Biochem. Biophys. 1954, 52, 400–413. [Google Scholar]
- Callaghan, P.; Martin, N.H. Optical rotatory dispersion and the conformation of human γ-Globulin. Biochem. J. 1963, 87, 225–232. [Google Scholar] [CrossRef]
- Michel, A. Zur Kenntnis der Gürber’schen Serumalbumin-Krystalle [On the knowledge about Guerber’s serum albumin crystals]. Verh. Physikal.-Med. Ges. Würzburg N. F. 1895, 29, 117–138. [Google Scholar]
- Hafner, E.A. Über die spezifische Rotation der Serumeiweißfraktionen [On the specific rotation of serum protein fractions]. Biochem. Z. 1925, 166, 424–430. [Google Scholar]
- Jirgensons, B. Optical rotation and viscosity of native and denatured proteins. I. Influence of pH, and the stability of various proteins toward several denaturing reagents. Arch. Biochem. Biophys. 1952, 39, 261–270. [Google Scholar]
- Jirgensons, B. Optical rotation and viscosity of native and denatured Proteins. VII. Human serum albumin in alkaline solutions. Makromol. Chem. 1956, 18, 48–61. [Google Scholar]
- Rasmussen, K.E. Clupein investigations. III. The determination of the optical rotation of clupein. Compt. Rend. Trav. Lab. Carlsberg Ser. Chim. 1938, 22, 449–453. [Google Scholar]
- Cluskey, J.E.; Wu, Y.V. Optical rotatory dispersion of wheat gluten, gliadin, and glutenin in acetic acid and aluminum lactate systems. Cereal Chem. 1966, 43, 119–126. [Google Scholar]
- Osborne, T.B.; Harris, I.F. The specific rotation of some vegetable proteins. J. Am. Chem. Soc. 1903, 25, 842–848. [Google Scholar] [CrossRef]
Amino Acid | Solvent | T (°C) | [α]D (°) | Reference |
---|---|---|---|---|
l-alanine | water | 22 | +2.7 | [16] |
l-arginine | water | 20 | +12.5 | [16] |
l-asparagine | water | 20 | –5.6 | [16] |
l-aspartic acid | water | 18 | +4.7 | [16] |
l-cysteine | water | 23 | –10.4 | [16] |
l-cystine | 4 M NaCl | 25 | –302.5 | this work |
l-glutamic acid | water | 18 | +11.5 | [16] |
l-glutamine | water | 25 | +6.5 | [17] |
l-histidine | water | 25 | –39.0 | [16] |
l-hydroxyproline | water | 22.5 | –75.2 | [16] |
l-isoleucine | water | 20 | +11.3 | [16] |
l-leucine | water | 24.7 | –10.8 | [16] |
l-lysine | water | 20 | +14.6 | [16] |
l-methionine | water | 25 | –8.1 | [16] |
l-phenylalanine | water | 20 | –35.1 | [16] |
l-proline | water | 23.4 | –85.0 | [16] |
l-serine | water | 20 | –6.8 | [16] |
l-threonine | water | 26 | +28.4 | [16] |
l-tryptophan | water | 22.7 | –31.5 | [16] |
l-tyrosine | water | 18 | –13.2 | [16] |
l-valine | water | 20 | +6.4 | [16] |
Model Protein | Origin | c/mg mL−1 | αg25, 10 cm | αD25, 10 cm | [α]g25 | [α]D25 | [α]g/[α]D |
---|---|---|---|---|---|---|---|
albumin, bovine | serum | 83.2 | −12.5121 | −5.3187 | −150.4 | −64.0 | 2.35 |
albumin, human | serum | 94.9 | −13.7865 | −5.9168 | −145.3 | −62.3 | 2.33 |
lipoxidase * | soybean | 33.0 | −2.4092 | −1.0383 | −73.0 | −31.5 | 2.32 |
ovalbumin | chicken | 97.8 | −4.7096 | −2.0747 | −48.2 | −21.2 | 2.27 |
lysozyme | chicken | 86.5 | −5.0279 | −2.2232 | −58.1 | −25.7 | 2.26 |
conalbumin | chicken | 42.1 | −3.5420 | −1.5780 | −84.0 | −37.4 | 2.24 |
β-galactosidase | AO | 25.9 | −2.0896 | −0.9403 | −79.4 | −35.7 | 2.22 |
β-lactoglobulin | bovine | 53.3 | −4.0282 | −1.4858 | −83.9 | −30.9 | 2.17 |
chymotrypsinogen A | bovine | 82.5 | −7.0018 | −3.2379 | −84.9 | −39.2 | 2.17 |
ribonuclease A | bovine | 39.6 | −6.3650 | −2.9525 | −160.8 | −74.6 | 2.16 |
concanavalin A | JB lectin | 8.9 | −0.7487 | −0.3480 | −84.1 | −39.1 | 2.15 |
pepsin A | porcine | 31.4 | −7.0599 | −3.3931 | −224.9 | −105.8 | 2.13 |
peroxidase * | HR | 37.6 | n. m. | −2.3700 | --- | −63.0 | --- |
glucose oxidase ** | AN | 78.8 | n. m. | −0.3425 | --- | −8.8 | --- |
Purified Protein | Origin | Formulation | c/mg mL−1 | αg25, 10 cm | αD25, 10 cm | [α]g25 | [α]D25 | [α]g/[α]D |
---|---|---|---|---|---|---|---|---|
albumin, human * | plasma | water | 50.1 | −7.4819 | −3.1911 | −149.34 | −63.7 | 2.34 |
recombinant albumin ** | rice | water | 96.2 | −13.4413 | −5.7467 | −139.72 | −59.7 | 2.34 |
albumin, bovine *** | serum | water | 68.7 | −9.5616 | −4.0666 | −139.18 | −59.2 | 2.35 |
α1-proteinase inhibitor | plasma | PBS | 56.6 | −5.4227 | −2.4168 | −95.81 | −42.7 | 2.24 |
immunoglobulin G | plasma | glycine | 99.8 | −10.7884 | −5.2028 | −108.10 | −52.1 | 2.07 |
immunoglobulin G | plasma | Gly, NaCl | 162.2 | −16.8216 | −8.1223 | −103.71 | −50.1 | 2.07 |
immunoglobulin G | plasma | proline | 196.3 | −20.1673 | −9.7295 | −102.74 | −49.6 | 2.07 |
mAb 1 **** | (His) | 164.8 | −16.3587 | −7.9513 | −99.26 | −48.2 | 2.06 | |
mAb 2 **** | (His, Arg) | 50.7 | −5.9973 | −2.8873 | −118.29 | −56.9 | 2.08 | |
mAb 3 ***** | 52.9 | −6.0786 | −2.9253 | −114.91 | −55.3 | 2.08 |
T/°C | Duration | c */mg mL−1 | αg20, 5 cm | αD20, 5 cm | [α]g20 | [α]D20 | [α]g20 rel. | [α]D20 rel. | [α]g/[α]D |
---|---|---|---|---|---|---|---|---|---|
37 | native | 52.9 | −3.0378 | −1.4619 | −114.91 | −55.3 | 1.0000 | 1.0000 | 2.078 |
50 | 10 min | 52.8 | −3.0420 | −1.4627 | −115.28 | −55.4 | 1.0033 | 1.0024 | 2.080 |
60 | 10 min | 52.9 | −3.0465 | −1.4636 | −115.24 | −55.4 | 1.0029 | 1.0012 | 2.082 |
65 | 10 min | 52.8 | −3.0510 | −1.4679 | −115.63 | −55.6 | 1.0062 | 1.0060 | 2.078 |
70 | 11 min | 52.8 | −3.0836 | −1.4828 | −116.86 | −56.2 | 1.0170 | 1.0162 | 2.080 |
75 | 10 min | 52.8 | −3.2812 | −1.5738 | −124.35 | −59.6 | 1.0822 | 1.0786 | 2.085 |
80 | 10 min | 52.8 | −4.0611 | −1.9369 | −153.91 | −73.4 | 1.3394 | 1.3274 | 2.097 |
85 | 10 min | 52.8 | −5.0107 | −2.3746 | −189.89 | −90.0 | 1.6526 | 1.6274 | 2.110 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Riedlsperger, L.; Anderle, H.; Schwaighofer, A.; Lemmerer, M. Protein Polarimetry, Perfected: Specific Rotation Measurement for the Refracto-Polarimetric Detection of Cryptic Protein Denaturation. Biophysica 2025, 5, 34. https://doi.org/10.3390/biophysica5030034
Riedlsperger L, Anderle H, Schwaighofer A, Lemmerer M. Protein Polarimetry, Perfected: Specific Rotation Measurement for the Refracto-Polarimetric Detection of Cryptic Protein Denaturation. Biophysica. 2025; 5(3):34. https://doi.org/10.3390/biophysica5030034
Chicago/Turabian StyleRiedlsperger, Lisa, Heinz Anderle, Andreas Schwaighofer, and Martin Lemmerer. 2025. "Protein Polarimetry, Perfected: Specific Rotation Measurement for the Refracto-Polarimetric Detection of Cryptic Protein Denaturation" Biophysica 5, no. 3: 34. https://doi.org/10.3390/biophysica5030034
APA StyleRiedlsperger, L., Anderle, H., Schwaighofer, A., & Lemmerer, M. (2025). Protein Polarimetry, Perfected: Specific Rotation Measurement for the Refracto-Polarimetric Detection of Cryptic Protein Denaturation. Biophysica, 5(3), 34. https://doi.org/10.3390/biophysica5030034