Bioactive Molecules: Structures, Functions and Potential Uses for Cancer Prevention and Targeted Therapies (2nd Edition)

A special issue of Biomolecules (ISSN 2218-273X). This special issue belongs to the section "Molecular Biophysics: Structure, Dynamics, and Function".

Deadline for manuscript submissions: 31 August 2025 | Viewed by 10606

Special Issue Editor


E-Mail Website
Guest Editor
Departments of Oncology, Pharmacology, and Pathology, Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI 48201, USA
Interests: molecular targeting; cancer prevention and therapy; drug reposition; ubiquitin–proteasome system; natural products; drug discovery
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

Cancer is a prevailing disease worldwide and is becoming worse as time goes on. Although some advanced, effective cancer therapies have been developed, there are limitations in current treatments, including severe side effects for patients, tumor recurrence and metastasis, and the development of drug resistance. Therefore, identifying novel cancer-specific targets and developing more effective, less toxic therapeutics is of urgent clinical significance to improve the survival rate of cancer patients.

Bioactive molecules play an important role in regulating the processes of cancer cell growth and development. The bioactive molecules interested in this Special Issue include small chemical molecules from nature and biomolecules found in living organisms, as well as their synthetic family members. It is well known that many clinically used drugs are developed from plants; many nutrient molecules from functional foods have cancer-preventive and antitumor activities; and many biomolecules (such as proteins and nucleic acids) are anticancer drug targets or have tumor-suppressing activities. All of these findings have been or could be used to develop new strategies for preventing and treating various cancers.

Our previous Special Issue has been very successful. Based on that, we would like to develop “Bioactive Molecules: Structures, Functions, and Potential Uses for Cancer Prevention and Targeted Therapies (Volume II),” which is to continuously publish selected review and research papers detailing bioactive molecules, their chemical structures, biological functions, cellular targets, signaling pathways, and mechanisms of action, as well as their potentials for cancer prevention, therapies, and management. We encourage you to submit manuscripts that fit the objectives and topics of this Special Issue.

Prof. Dr. Qingping Dou
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Biomolecules is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2700 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • small molecules
  • biomolecules
  • molecular targeting
  • natural products
  • cancer management

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • e-Book format: Special Issues with more than 10 articles can be published as dedicated e-books, ensuring wide and rapid dissemination.

Further information on MDPI's Special Issue policies can be found here.

Related Special Issue

Published Papers (8 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

Jump to: Review

13 pages, 1626 KiB  
Article
Optimization of Intra-Arterial Administration of Chemotherapeutic Agents for Glioblastoma in the F98-Fischer Glioma-Bearing Rat Model
by Juliette Latulippe, Laurent-Olivier Roy, Fernand Gobeil and David Fortin
Biomolecules 2025, 15(3), 421; https://doi.org/10.3390/biom15030421 - 16 Mar 2025
Viewed by 1117
Abstract
Glioblastoma (GBM) is a difficult disease to treat for different reasons, with the blood–brain barrier (BBB) preventing therapeutic drugs from reaching the tumor being one major hurdle. The median overall survival is only 14.6 months after the standard first line of treatment. At [...] Read more.
Glioblastoma (GBM) is a difficult disease to treat for different reasons, with the blood–brain barrier (BBB) preventing therapeutic drugs from reaching the tumor being one major hurdle. The median overall survival is only 14.6 months after the standard first line of treatment. At relapse, there is no recognized standard second-line treatment. Our team uses intra-arterial (IA) chemotherapy as a means to bypass the BBB, hence achieving an overall median survival of 25 months. However, most patients eventually fail the treatment and progress. This is why we wish to expand our portfolio of options in terms of chemotherapy agents available for IA administration. In this study, we tested topotecan, cytarabine, and new formulations of carboplatin and paclitaxel by IA administration in the F98-Fischer glioma-bearing rat model as a screening tool for identifying potential candidate drugs. The topotecan IA group showed increased survival compared to the intravenous (IV) group (29.0 vs. 23.5), whereas the IV cytarabine group survived longer than the IA group (26.5 vs. 22.5). The new formulation of carboplatin showed a significant increase in survival compared to two previous studies with the conventional form (37.5 vs. 26.0 and 30.0). As for paclitaxel, it was too neurotoxic for IA administration. Topotecan and the new formulation of carboplatin demonstrated significant results, warranting their transition for consideration in clinical trials. Full article
Show Figures

Figure 1

18 pages, 6081 KiB  
Article
PLGA-Nano-Encapsulated Disulfiram Inhibits Cancer Stem Cells and Targets Non-Small Cell Lung Cancer In Vitro and In Vivo
by Kate Butcher, Zhipeng Wang, Sathishkumar Kurusamy, Zaixing Zhang, Mark R. Morris, Mohammad Najlah, Christopher McConville, Vinodh Kannappan and Weiguang Wang
Biomolecules 2024, 14(12), 1651; https://doi.org/10.3390/biom14121651 - 23 Dec 2024
Viewed by 1087
Abstract
Cancer stem cells (CSCs) play a key role in non-small cell lung cancer (NSCLC) chemoresistance and metastasis. In this study, we used two NSCLC cell lines to investigate the regulating effect of hypoxia in the induction and maintenance of CSC traits. Our study [...] Read more.
Cancer stem cells (CSCs) play a key role in non-small cell lung cancer (NSCLC) chemoresistance and metastasis. In this study, we used two NSCLC cell lines to investigate the regulating effect of hypoxia in the induction and maintenance of CSC traits. Our study demonstrated hypoxia-induced stemness and chemoresistance at levels comparable to those in typical CSC sphere culture. Activation of the NF-κB pathway (by transfection of NF-κB-p65) plays a key role in NSCLC CSCs and chemoresistance. Disulfiram (DS), an anti-alcoholism drug, showed a strong in vitro anti-CSC effect. It blocked cancer cell sphere reformation and clonogenicity, synergistically enhanced the cytotoxicity of four anti-NSCLC drugs (doxorubicin, gemcitabine, oxaliplatin and paclitaxel) and reversed hypoxia-induced resistance. The effect of DS on CSCs is copper-dependent. A very short half-life in the bloodstream is the major limitation for the translation of DS into a cancer treatment. Our team previously developed a poly lactic-co-glycolic acid (PLGA) nanoparticle encapsulated DS (DS-PLGA) with a long half-life in the bloodstream. Intra venous injection of DS-PLGA in combination with the oral application of copper gluconate has strong anticancer efficacy in a metastatic NSCLC mouse model. Further study may be able to translate DS-PLGA into cancer applications. Full article
Show Figures

Figure 1

23 pages, 4043 KiB  
Article
Chaga Mushroom Triterpenoids Inhibit Dihydrofolate Reductase and Act Synergistically with Conventional Therapies in Breast Cancer
by Junbiao Wang, Daniela Beghelli, Augusto Amici, Stefania Sut, Stefano Dall’Acqua, Giulio Lupidi, Diego Dal Ben, Onelia Bistoni, Daniele Tomassoni, Barbara Belletti, Sanaa Musa, Jamal Mahajna, Stefania Pucciarelli and Cristina Marchini
Biomolecules 2024, 14(11), 1454; https://doi.org/10.3390/biom14111454 - 17 Nov 2024
Viewed by 2492
Abstract
Inonotus obliquus (Chaga) is a medicinal mushroom with several pharmacological properties that is used as a tea in traditional Chinese medicine. In this study, Chaga water extract was digested in vitro to mimic the natural processing and absorption of its biocomponents when it [...] Read more.
Inonotus obliquus (Chaga) is a medicinal mushroom with several pharmacological properties that is used as a tea in traditional Chinese medicine. In this study, Chaga water extract was digested in vitro to mimic the natural processing and absorption of its biocomponents when it is consumed as functional beverage, and its anticancer activities were evaluated in breast cancer (BC) cell lines, representing HER2-positive and triple-negative subtypes. After chemical characterization by liquid chromatography/mass spectrometry (HR-QTOF) analysis, the effect of Chaga biocomponents on cell viability and cell cycle progression was assessed by MTT assay, FACS analysis, and Western blot. Dihydrofolate reductase (DHFR) activity was measured by an enzymatic assay. Four highly bioactive triterpenoids (inotodiol, trametenolic acid, 3-hydroxy-lanosta-8,24-dien-21-al, and betulin) were identified as the main components, able to decrease BC cell viability and block the cell cycle in G0/G1 by inducing the downregulation of cyclin D1, CDK4, cyclin E, and phosphorylated retinoblastoma protein. DHFR was identified as their crucial target. Moreover, bioactive Chaga components exerted a synergistic action with cisplatin and with trastuzumab in SK-BR-3 cells by inhibiting both HER2 and HER1 activation and displayed an immunomodulatory effect. Thus, Inonotus obliquus represents a source of triterpenoids that are effective against aggressive BC subtypes and display properties of targeted drugs. Full article
Show Figures

Figure 1

Review

Jump to: Research

59 pages, 2886 KiB  
Review
Updated Review on Natural Polyphenols: Molecular Mechanisms, Biological Effects, and Clinical Applications for Cancer Management
by Zainab Sabry Othman Ahmed, Elyas Khan, Nathan Elias, Alhussein Elshebiny and Qingping Dou
Biomolecules 2025, 15(5), 629; https://doi.org/10.3390/biom15050629 (registering DOI) - 28 Apr 2025
Viewed by 65
Abstract
Polyphenols, naturally occurring compounds found exclusively in plants, have gained significant attention for their potential in cancer prevention and treatment. These compounds are known for their antioxidant properties and are abundant in various plant-based foods, such as vegetables, fruits, grains, and beverages. Recent [...] Read more.
Polyphenols, naturally occurring compounds found exclusively in plants, have gained significant attention for their potential in cancer prevention and treatment. These compounds are known for their antioxidant properties and are abundant in various plant-based foods, such as vegetables, fruits, grains, and beverages. Recent studies have highlighted the broad spectrum of health benefits of polyphenols, including their antiviral, anti-inflammatory, and anticancer properties. In addition, these naturally derived compounds are increasingly important for drug discovery due to their high molecular diversity and novel biofunctionalities. This review provides an in-depth analysis of the current research and knowledge on the potential use of dietary polyphenols as bioactive compounds for the prevention and treatment of various cancers. This review aims to provide valuable insights into the mechanisms underlying the anticancer properties of phenolic compounds in both laboratory and clinical settings. Furthermore, this review highlights the positive clinical outcomes associated with the use of polyphenols as anticancer agents and offers guidance for future research to advance this promising field. Full article
Show Figures

Figure 1

16 pages, 613 KiB  
Review
Triggering Pyroptosis in Cancer
by Daniel E. Johnson and Zhibin Cui
Biomolecules 2025, 15(3), 348; https://doi.org/10.3390/biom15030348 - 28 Feb 2025
Viewed by 664
Abstract
Pyroptosis is an inflammatory programmed cell death recently identified as a crucial cellular process in various diseases, including cancers. Unlike other forms of cell death, canonical pyroptosis involves the specific cleavage of gasdermin by caspase-1, resulting in cell membrane damage and the release [...] Read more.
Pyroptosis is an inflammatory programmed cell death recently identified as a crucial cellular process in various diseases, including cancers. Unlike other forms of cell death, canonical pyroptosis involves the specific cleavage of gasdermin by caspase-1, resulting in cell membrane damage and the release of the pro-inflammatory cytokines IL-1β and IL-18. Initially observed in innate immune cells responding to external pathogens or internal death signals, pyroptotic cell death has now been observed in numerous cell types. Recent studies have extensively explored different ways to trigger pyroptotic cell death in solid tumors, presenting a promising avenue for cancer treatment. This review outlines the mechanisms of both canonical and noncanonical pyroptosis pertinent to cancer and primarily focuses on various biomolecules that can induce pyroptosis in malignancies. This strategy aims not only to eliminate cancer cells but also to promote an improved tumor immune microenvironment. Furthermore, emerging research indicates that targeting pyroptotic pathways may improve the effectiveness of existing cancer treatments, making them more potent against resistant tumor types, offering new hope for overcoming treatment resistance in aggressive malignancies. Full article
Show Figures

Figure 1

35 pages, 13269 KiB  
Review
Ubiquitin-Specific Protease Inhibitors for Cancer Therapy: Recent Advances and Future Prospects
by Mohamad Bakkar, Sara Khalil, Komal Bhayekar, Narva Deshwar Kushwaha, Amirreza Samarbakhsh, Sadaf Dorandish, Holly Edwards, Q. Ping Dou, Yubin Ge and Navnath S. Gavande
Biomolecules 2025, 15(2), 240; https://doi.org/10.3390/biom15020240 - 7 Feb 2025
Viewed by 1940
Abstract
Cancer management has traditionally depended on chemotherapy as the mainstay of treatment; however, recent advancements in targeted therapies and immunotherapies have offered new options. Ubiquitin-specific proteases (USPs) have emerged as promising therapeutic targets in cancer treatment due to their crucial roles in regulating [...] Read more.
Cancer management has traditionally depended on chemotherapy as the mainstay of treatment; however, recent advancements in targeted therapies and immunotherapies have offered new options. Ubiquitin-specific proteases (USPs) have emerged as promising therapeutic targets in cancer treatment due to their crucial roles in regulating protein homeostasis and various essential cellular processes. This review covers the following: (1) the structural and functional characteristics of USPs, highlighting their involvement in key cancer-related pathways, and (2) the discovery, chemical structures, mechanisms of action, and potential clinical implications of USP inhibitors in cancer therapy. Particular attention is given to the role of USP inhibitors in enhancing cancer immunotherapy, e.g., modulation of the tumor microenvironment, effect on regulatory T cell function, and influence on immune checkpoint pathways. Furthermore, this review summarizes the current progress and challenges of clinical trials involving USP inhibitors as cancer therapy. We also discuss the complexities of achieving target selectivity, the ongoing efforts to develop more specific and potent USP inhibitors, and the potential of USP inhibitors to overcome drug resistance and synergize with existing cancer treatments. We finally provide a perspective on future directions in targeting USPs, including the potential for personalized medicine based on specific gene mutations, underscoring their significant potential for enhancing cancer treatment. By elucidating their mechanisms of action, clinical progress, and potential future applications, we hope that this review could serve as a useful resource for both basic scientists and clinicians in the field of cancer therapeutics. Full article
Show Figures

Figure 1

16 pages, 2388 KiB  
Review
Targeting the PARylation-Dependent Ubiquitination Signaling Pathway for Cancer Therapies
by Daoyuan Huang, Jingchao Wang, Li Chen, Weiwei Jiang, Hiroyuki Inuzuka, David K. Simon and Wenyi Wei
Biomolecules 2025, 15(2), 237; https://doi.org/10.3390/biom15020237 - 7 Feb 2025
Viewed by 996
Abstract
Poly(ADP-ribosyl)ation (PARylation) is a dynamic protein post-translational modification (PTM) mediated by ADP-ribosyltransferases (ARTs), which regulates a plethora of essential biological processes, such as DNA repair, gene expression, and signal transduction. Among these, PAR-dependent ubiquitination (PARdU) plays a pivotal role in tagging PARylated substrates [...] Read more.
Poly(ADP-ribosyl)ation (PARylation) is a dynamic protein post-translational modification (PTM) mediated by ADP-ribosyltransferases (ARTs), which regulates a plethora of essential biological processes, such as DNA repair, gene expression, and signal transduction. Among these, PAR-dependent ubiquitination (PARdU) plays a pivotal role in tagging PARylated substrates for subsequent ubiquitination and degradation events through the coordinated action of enzymes, including the E3 ligase RNF146 and the ADP-ribosyltransferase tankyrase. Notably, this pathway has emerged as a key regulator of tumorigenesis, immune modulation, and cell death. This review elucidates the molecular mechanisms of the PARdU pathway, including the RNF146–tankyrase interaction, substrate specificity, and upstream regulatory pathways. It also highlights the biological functions of PARdU in DNA damage repair, signaling pathways, and metabolic regulation, with a focus on its therapeutic potential in cancer treatment. Strategies targeting PARdU, such as tankyrase and RNF146 inhibitors, synthetic lethality approaches, and immune checkpoint regulation, offer promising avenues for precision oncology. These developments underscore the potential of PARdU as a transformative therapeutic target in combating various types of human cancer. Full article
Show Figures

Figure 1

35 pages, 1450 KiB  
Review
Epigenetic Properties of Compounds Contained in Functional Foods Against Cancer
by Giulia Casari, Brenda Romaldi, Andrea Scirè, Cristina Minnelli, Daniela Marzioni, Gianna Ferretti and Tatiana Armeni
Biomolecules 2025, 15(1), 15; https://doi.org/10.3390/biom15010015 - 26 Dec 2024
Cited by 4 | Viewed by 1661
Abstract
Epigenetics encompasses reversible and heritable genomic changes in histones, DNA expression, and non-coding RNAs that occur without modifying the nucleotide DNA sequence. These changes play a critical role in modulating cell function in both healthy and pathological conditions. Dysregulated epigenetic mechanisms are implicated [...] Read more.
Epigenetics encompasses reversible and heritable genomic changes in histones, DNA expression, and non-coding RNAs that occur without modifying the nucleotide DNA sequence. These changes play a critical role in modulating cell function in both healthy and pathological conditions. Dysregulated epigenetic mechanisms are implicated in various diseases, including cardiovascular disorders, neurodegenerative diseases, obesity, and mainly cancer. Therefore, to develop innovative therapeutic strategies, research for compounds able to modulate the complex epigenetic landscape of cancer is rapidly surging. Dietary phytochemicals, mostly flavonoids but also tetraterpenoids, organosulfur compounds, and isothiocyanates, represent biologically active molecules found in vegetables, fruits, medicinal plants, and beverages. These natural organic compounds exhibit epigenetic modulatory properties by influencing the activity of epigenetics key enzymes, such as DNA methyltransferases, histone acetyltransferases and deacetylases, and histone methyltransferases and demethylases. Due to the reversibility of the modifications that they induce, their minimal adverse effects, and their potent epigenetic regulatory activity, dietary phytochemicals hold significant promise as antitumor agents and warrant further investigation. This review aims to consolidate current data on the diverse epigenetic effects of the six major flavonoid subclasses, as well as other natural compounds, in the context of cancer. The goal is to identify new therapeutic epigenetic targets for drug development, whether as stand-alone treatments or in combination with conventional antitumor approaches. Full article
Show Figures

Graphical abstract

Back to TopTop