Bio-Inspired Flapping Wing Aerodynamics for Propulsion and Power Generation

A special issue of Biomimetics (ISSN 2313-7673). This special issue belongs to the section "Biomimetic Design, Constructions and Devices".

Deadline for manuscript submissions: closed (15 June 2024) | Viewed by 9821

Special Issue Editor


E-Mail Website
Guest Editor
Department of Mechanics, Zhejiang University, Hangzhou 310027, China
Interests: biomimetic hydrodynamics; fluid mechanics for flying and swimming; collective locomotion; hydrodynamic stability; computational fluid dynamics
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

Aquatic organisms, insects, and avian species employ a distinct kinetic mechanism for locomotion, characterized by oscillatory motions involving fins or wings, as opposed to conventional rotational propellers. This unconventional approach yields highly efficient propulsion and maneuvering capabilities. Notably, species such as tuna, dolphins, and sharks showcase exemplary hydrodynamic performance, characterized by elevated cruising speeds, superior efficiency, and minimal noise generation, achieved through the flapping motion of their caudal fins. Additionally, these oscillatory motions present opportunities for harnessing energy from incoming vortices or unsteady flows. Both applications necessitate a nuanced understanding of intricate physical mechanisms, encompassing fluid–structure interactions, leading-edge flow separation, and stall delay. Recently, there has been a discernible surge in research focused on unraveling the dynamics of flapping foils, evident in the escalating volume of publications dedicated to this subject.

This Special Issue aims to encapsulate novel conceptual designs for biomimetic propulsion or power generation employing flapping foils. Furthermore, it encompasses fundamental investigations that shed light on the underlying physics of flapping foil hydrodynamics. Researchers and engineers across diverse fluid mechanics and biomimetic design domains are cordially invited to contribute their cutting-edge research to this issue.

Prof. Dr. Jian Deng
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Biomimetics is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2200 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • flapping foil
  • biomimetic propulsion
  • power generation
  • fluid–structure interaction

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • e-Book format: Special Issues with more than 10 articles can be published as dedicated e-books, ensuring wide and rapid dissemination.

Further information on MDPI's Special Issue polices can be found here.

Published Papers (8 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

14 pages, 14114 KiB  
Article
Investigating the Mechanical Performance of Bionic Wings Based on the Flapping Kinematics of Beetle Hindwings
by Chao Liu, Tianyu Shen, Huan Shen, Mingxiang Ling, Guodong Chen, Bo Lu, Feng Chen and Zhenhua Wang
Biomimetics 2024, 9(6), 343; https://doi.org/10.3390/biomimetics9060343 - 6 Jun 2024
Viewed by 772
Abstract
The beetle, of the order Coleoptera, possesses outstanding flight capabilities. After completing flight, they can fold their hindwings under the elytra and swiftly unfold them again when they take off. This sophisticated hindwing structure is a result of biological evolution, showcasing the strong [...] Read more.
The beetle, of the order Coleoptera, possesses outstanding flight capabilities. After completing flight, they can fold their hindwings under the elytra and swiftly unfold them again when they take off. This sophisticated hindwing structure is a result of biological evolution, showcasing the strong environmental adaptability of this species. The beetle’s hindwings can provide biomimetic inspiration for the design of flapping-wing micro air vehicles (FWMAVs). In this study, the Asian ladybird (Harmonia axyridis Pallas) was chosen as the bionic research object. Various kinematic parameters of its flapping flight were analyzed, including the flight characteristics of the hindwings, wing tip motion trajectories, and aerodynamic characteristics. Based on these results, a flapping kinematic model of the Asian ladybird was established. Then, three bionic deployable wing models were designed and their structural mechanical properties were analyzed. The results show that the structure of wing vein bars determined the mechanical properties of the bionic wing. This study can provide a theoretical basis and technical reference for further bionic wing design. Full article
Show Figures

Graphical abstract

20 pages, 6137 KiB  
Article
Experimental Study on Aerodynamic Characteristics of Downwind Bionic Tower Wind Turbine
by Junwei Yang, Xin Sun, Hua Yang and Xiangjun Wang
Biomimetics 2024, 9(6), 336; https://doi.org/10.3390/biomimetics9060336 - 2 Jun 2024
Viewed by 724
Abstract
The vibrissae of harbor seals exhibit a distinct three-dimensional structure compared to circular cylinders, resulting in a wave-shaped configuration that effectively reduces drag and suppresses vortex shedding in the wake. However, this unique cylinder design has not yet been applied to wind power [...] Read more.
The vibrissae of harbor seals exhibit a distinct three-dimensional structure compared to circular cylinders, resulting in a wave-shaped configuration that effectively reduces drag and suppresses vortex shedding in the wake. However, this unique cylinder design has not yet been applied to wind power technologies. Therefore, this study applies this concept to the design of downwind wind turbines and employs wind tunnel testing to compare the wake flow characteristics of a single-cylinder model while also investigating the output power and wake performance of the model wind turbine. Herein, we demonstrate that in the single-cylinder test, the bionic case shows reduced turbulence intensity in its wake compared to that observed with the circular cylinder case. The difference in the energy distribution in the frequency domain behind the cylinder was mainly manifested in the near-wake region. Moreover, our findings indicate that differences in power coefficient are predominantly noticeable with high tip speed ratios. Furthermore, as output power increases, this bionic cylindrical structure induces greater velocity deficit and higher turbulence intensity behind the rotor. These results provide valuable insights for optimizing aerodynamic designs of wind turbines towards achieving enhanced efficiency for converting wind energy. Full article
Show Figures

Figure 1

14 pages, 4191 KiB  
Article
Effect of Frequency–Amplitude Parameter and Aspect Ratio on Propulsion Performance of Underwater Flapping-Foil
by Hao Ding, Ruoqian Chen, Yawei Zhu, Huipeng Shen and Qiang Gao
Biomimetics 2024, 9(6), 324; https://doi.org/10.3390/biomimetics9060324 - 28 May 2024
Cited by 1 | Viewed by 566
Abstract
The propulsion system is the core component of unmanned underwater vehicles. The flapping propulsion method of marine animals’ flippers, which allows for flexibility, low noise, and high energy utilization at low speeds, can provide a new perspective for the development of new propulsion [...] Read more.
The propulsion system is the core component of unmanned underwater vehicles. The flapping propulsion method of marine animals’ flippers, which allows for flexibility, low noise, and high energy utilization at low speeds, can provide a new perspective for the development of new propulsion technology. In this study, a new experimental flapping propulsion apparatus that can be installed in both directions has been constructed. The guide rail slider mechanism can achieve the retention of force in the direction of movement, thereby decoupling thrust, lift, and torque. Subsequently, the motion parameters of frequency–amplitude related to the thrust and lift of a bionic flapping-foil are scrutinized. A response surface connecting propulsion efficiency and these motion parameters is formulated. The highest efficiency of the flapping-foil propulsion is achieved at a frequency of 2 Hz and an amplitude of 40°. Furthermore, the impact of the installation mode and the aspect ratio of the flapping-foil is examined. The reverse installation of the swing yields a higher thrust than the forward swing. As the chord length remains constant and the span length increases, the propulsive efficiency gradually improves. When the chord length is extended to a certain degree, the propulsion efficiency exhibits a parabolic pattern, increasing initially and then diminishing. This investigation offers a novel perspective for the bionic design within the domain of underwater propulsion. This research provides valuable theoretical guidance for bionic design in the underwater propulsion field. Full article
Show Figures

Figure 1

16 pages, 3580 KiB  
Article
Simulation and Controller Design for a Fish Robot with Control Fins
by Sandhyarani Gumpina, Seungyeon Lee, Jeong-Hwan Kim, Hoon Cheol Park and Taesam Kang
Biomimetics 2024, 9(6), 317; https://doi.org/10.3390/biomimetics9060317 - 25 May 2024
Viewed by 869
Abstract
In this paper, a nonlinear simulation block for a fish robot was designed using MATLAB Simulink. The simulation block incorporated added masses, hydrodynamic damping forces, restoring forces, and forces and moments due to dorsal fins, pectoral fins, and caudal fins into six-degree-of-freedom equations [...] Read more.
In this paper, a nonlinear simulation block for a fish robot was designed using MATLAB Simulink. The simulation block incorporated added masses, hydrodynamic damping forces, restoring forces, and forces and moments due to dorsal fins, pectoral fins, and caudal fins into six-degree-of-freedom equations of motion. To obtain a linearized model, we used three different nominal surge velocities (i.e., 0.2 m/s, 0.4 m/s, and 0.6 m/s). After obtaining output responses by applying pseudo-random binary signal inputs to a nonlinear model, an identification tool was used to obtain approximated linear models between inputs and outputs. Utilizing the obtained linearized models, two-degree-of-freedom proportional, integral, and derivative controllers were designed, and their characteristics were analyzed. For the 0.4 m/s nominal surge velocity models, the gain margins and phase margins of the surge, pitch, and yaw controllers were infinity and 69 degrees, 26.3 dB and 85 degrees, and infinity and 69 degrees, respectively. The bandwidths of surge, pitch, and yaw control loops were determined to be 2.3 rad/s, 0.17 rad/s, and 2.0 rad/s, respectively. Similar characteristics were observed when controllers designed for linear models were applied to the nonlinear model. When step inputs were applied to the nonlinear model, the maximum overshoot and steady-state errors were very small. It was also found that the nonlinear plant with three different nominal surge velocities could be controlled by a single controller designed for a linear model with a nominal surge velocity of 0.4 m/s. Therefore, controllers designed using linear approximation models are expected to work well with an actual nonlinear model. Full article
Show Figures

Graphical abstract

22 pages, 12569 KiB  
Article
Enhancing Energy Harvesting Efficiency of Flapping Wings with Leading-Edge Magnus Effect Cylinder
by Huaqiang Zhang, Bing Zhu and Weidong Chen
Biomimetics 2024, 9(5), 293; https://doi.org/10.3390/biomimetics9050293 - 13 May 2024
Viewed by 1092
Abstract
According to the Magnus principle, a rotating cylinder experiences a lateral force perpendicular to the incoming flow direction. This phenomenon can be harnessed to boost the lift of an airfoil by positioning a rotating cylinder at the leading edge. In this study, we [...] Read more.
According to the Magnus principle, a rotating cylinder experiences a lateral force perpendicular to the incoming flow direction. This phenomenon can be harnessed to boost the lift of an airfoil by positioning a rotating cylinder at the leading edge. In this study, we simulate flapping-wing motion using the sliding mesh technique in a heaving coordinate system to investigate the energy harvesting capabilities of Magnus effect flapping wings (MEFWs) featuring a leading-edge rotating cylinder. Through analysis of the flow field vortex structure and pressure distribution, we explore how control parameters such as gap width, rotational speed ratio, and phase difference of the leading-edge rotating cylinder impact the energy harvesting characteristics of the flapping wing. The results demonstrate that MEFWs effectively mitigate the formation of leading-edge vortices during wing motion. Consequently, this enhances both lift generation and energy harvesting capability. MEFWs with smaller gap widths are less prone to induce the detachment of leading-edge vortices during motion, ensuring a higher peak lift force and an increase in the energy harvesting efficiency. Moreover, higher rotational speed ratios and phase differences, synchronized with wing motion, can prevent leading-edge vortex generation during wing motion. All three control parameters contribute to enhancing the energy harvesting capability of MEFWs within a certain range. At the examined Reynolds number, the optimal parameter values are determined to be a = 0.0005, R = 3, and ϕ0 = 0°. Full article
Show Figures

Figure 1

12 pages, 4155 KiB  
Article
Clap-and-Fling Mechanism of Climbing-Flight Coccinella Septempunctata
by Lili Yang, Huichao Deng, Kai Hu and Xilun Ding
Biomimetics 2024, 9(5), 282; https://doi.org/10.3390/biomimetics9050282 - 9 May 2024
Viewed by 1270
Abstract
Previous studies on the clap–fling mechanism have predominantly focused on the initial downward and forward phases of flight in miniature insects, either during hovering or forward flight. However, this study presents the first comprehensive kinematic data of Coccinella septempunctata during climbing flight. It [...] Read more.
Previous studies on the clap–fling mechanism have predominantly focused on the initial downward and forward phases of flight in miniature insects, either during hovering or forward flight. However, this study presents the first comprehensive kinematic data of Coccinella septempunctata during climbing flight. It reveals, for the first time, that a clap-and-fling mechanism occurs during the initial upward and backward phase of the hind wings’ motion. This discovery addresses the previously limited understanding of the clap-and-fling mechanism by demonstrating that, during the clap motion, the leading edges of beetle’s wings come into proximity to form a figure-eight shape before rotating around their trailing edge to open into a “V” shape. By employing numerical solutions to solve Navier–Stokes (N-S) equations, we simulated both single hind wings’ and double hind wings’ aerodynamic conditions. Our findings demonstrate that this fling mechanism not only significantly enhances the lift coefficient by approximately 9.65% but also reduces the drag coefficient by about 1.7%, indicating an extension of the applicability range of this clap-and-fling mechanism beyond minute insect flight. Consequently, these insights into insect flight mechanics deepen our understanding of their biological characteristics and inspire advancements in robotics and biomimetics. Full article
Show Figures

Figure 1

20 pages, 5043 KiB  
Article
Postural Change of the Annual Cicada (Tibicen linnei) Helps Facilitate Backward Flight
by Ayodeji T. Bode-Oke, Alec Menzer and Haibo Dong
Biomimetics 2024, 9(4), 233; https://doi.org/10.3390/biomimetics9040233 - 14 Apr 2024
Viewed by 1268
Abstract
Cicadas are heavy fliers well known for their life cycles and sound production; however, their flight capabilities have not been extensively investigated. Here, we show for the first time that cicadas appropriate backward flight for additional maneuverability. We studied this flight mode using [...] Read more.
Cicadas are heavy fliers well known for their life cycles and sound production; however, their flight capabilities have not been extensively investigated. Here, we show for the first time that cicadas appropriate backward flight for additional maneuverability. We studied this flight mode using computational fluid dynamics (CFD) simulations based on three-dimensional reconstructions of high-speed videos captured in a laboratory. Backward flight was characterized by steep body angles, high angles of attack, and high wing upstroke velocities. Wing motion occurred in an inclined stroke plane that was fixed relative to the body. Likewise, the directions of the half-stroke-averaged aerodynamic forces relative to the body (local frame) were constrained in a narrow range (<20°). Despite the drastic difference of approximately 90° in body posture between backward and forward flight in the global frame, the aerodynamic forces in both flight scenarios were maintained in a similar direction relative to the body. The forces relative to the body were also oriented in a similar direction when observed during climbs and turns, although the body orientation and motions were different. Hence, the steep posture appropriated during backward flight was primarily utilized for reorienting both the stroke plane and aerodynamic force in the global frame. A consequence of this reorientation was the reversal of aerodynamic functions of the half strokes in backward flight when compared to forward flight. The downstroke generated propulsive forces, while the upstroke generated vertical forces. For weight support, the upstroke, which typically generates lesser forces in forward flight, is aerodynamically active in backward flight. A leading-edge vortex (LEV) was observed on the forewings during both half strokes. The LEV’s effect, together with the high upstroke velocity, increased the upstroke’s force contribution from 10% of the net forces in forward flight to 50% in backward flight. The findings presented in this study have relevance to the design of micro-aerial vehicles (MAVs), as backward flight is an important characteristic for MAV maneuverability or for taking off from vertical surfaces. Full article
Show Figures

Figure 1

20 pages, 8446 KiB  
Article
The Effect of Spanwise Folding on the Aerodynamic Performance of a Passively Deformed Flapping Wing
by Ming Qi, Menglong Ding, Wenguo Zhu and Shu Li
Biomimetics 2024, 9(1), 42; https://doi.org/10.3390/biomimetics9010042 - 10 Jan 2024
Viewed by 2086
Abstract
The wings of birds exhibit multi-degree-of-freedom motions during flight. Among them, the flapping folding motion and chordwise passive deformation of the wings are prominent features of large birds in flight, contributing to their exceptional flight capabilities. This article presents a method for the [...] Read more.
The wings of birds exhibit multi-degree-of-freedom motions during flight. Among them, the flapping folding motion and chordwise passive deformation of the wings are prominent features of large birds in flight, contributing to their exceptional flight capabilities. This article presents a method for the fast and accurate calculation of folding passive torsional flapping wings in the early design stage. The method utilizes the unsteady three-dimensional panel method to solve the aerodynamic force and the linear beam element model to analyze the fluid–structure coupling problem. Performance comparisons of folding flapping wings with different kinematics are conducted, and the effects of various kinematic parameters on folding flapping wings are analyzed. The results indicate that kinematic parameters significantly influence the lift coefficient, thrust coefficient, and propulsion efficiency. Selecting the appropriate kinematic and geometric parameters is crucial for enhancing the efficiency of the folding flapping wing. Full article
Show Figures

Figure 1

Back to TopTop