Central Role of Mitochondrial Oxidative Stress in the Pathophysiology of Disorders (2nd Edition)

A special issue of Biomedicines (ISSN 2227-9059). This special issue belongs to the section "Molecular and Translational Medicine".

Deadline for manuscript submissions: 31 March 2026 | Viewed by 767

Special Issue Editors


E-Mail Website
Guest Editor
Department of Biochemistry, Universidade Federal do Rio Grande do Sul, Porto Alegre CEP 90035-903, Brazil
Interests: oxidative stress
Special Issues, Collections and Topics in MDPI journals

E-Mail Website
Guest Editor
Departamento de Bioquímica, Universidade Federal do Rio, Grande do Sul, Rua Ramiro Barcelos, 2600-Anexo, Bairro Santa Cecília, Porto Alegre 90035-003, RS, Brazil
Interests: oxidative stress; glial cells; neuroprotection

Special Issue Information

Dear Colleagues,

Mitochondria are the main sites of cellular oxidation and energy conversion, and most cellular ATP is produced by oxidative phosphorylation. During oxidative phosphorylation, reactive oxygen species (ROS) are produced as byproducts in mitochondria, primarily by the respiratory chain complexes I and III, and are sequestered by antioxidant defenses. Mitochondrial functionality is also maintained by the so-called mitochondrial quality control, which includes processes such as mitochondrial biogenesis, dynamics, and mitophagy. Since mitochondria are considered the main source of reactive oxygen species (ROS) production in cells, impairments in bioenergetics or any mitochondrial quality control process are often accompanied by elevated ROS and oxidative damage. Therefore, mitochondrial dysfunction and ROS production are involved in the pathophysiology of primary mitochondrial diseases, neurodegenerative disorders, cardiac insufficiency, diabetes mellitus, and aging, among others. Antioxidants and modulators of mitochondrial function can reduce mitochondrial oxidative damage and are considered promising therapeutic strategies for these pathologies. In this Special Issue, we aim to contribute to a better understanding of the pathophysiology of different pathologies characterized by mitochondrial dysfunction and reveal novel therapeutic approaches for these disorders. We look forward to your contributions to this Special Issue.

Dr. Guilhian Leipnitz
Dr. André Quincozes-Santos
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Biomedicines is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2600 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • mitochondrial dysfunction
  • reactive oxygen species
  • bioenergetics
  • mitochondrial quality control
  • pathologies
  • protective agents

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • Reprint: MDPI Books provides the opportunity to republish successful Special Issues in book format, both online and in print.

Further information on MDPI's Special Issue policies can be found here.

Published Papers (1 paper)

Order results
Result details
Select all
Export citation of selected articles as:

Research

36 pages, 19130 KB  
Article
The Transgenerational Impact of High-Fat Diet and Diabetic Pregnancy on Embryonic Transcriptomics and Mitochondrial Health
by Abigail K. Klein, Benjamin P. Derenge, Malini Mukherjee, Srikrishna P. Reddy, Tricia D. Larsen, Prathapan Ayyappan, Tyler C. T. Gandy, Kyle M. Siemers, Michael S. Kareta and Michelle L. Baack
Biomedicines 2025, 13(8), 2019; https://doi.org/10.3390/biomedicines13082019 - 19 Aug 2025
Viewed by 567
Abstract
Background/Objectives: Overnutrition increases comorbidities such as gestational diabetes during pregnancy that can have detrimental consequences for both parent and progeny. We previously reported that high-fat (HF) diet and late-gestation diabetes (DM) incite mitochondrial dysfunction, oxidative stress, and cardiometabolic disease in first generation (F1) [...] Read more.
Background/Objectives: Overnutrition increases comorbidities such as gestational diabetes during pregnancy that can have detrimental consequences for both parent and progeny. We previously reported that high-fat (HF) diet and late-gestation diabetes (DM) incite mitochondrial dysfunction, oxidative stress, and cardiometabolic disease in first generation (F1) rat offspring, partially through epigenomic and transcriptomic programming. Primordial germ cells, which become the second generation (F2), are also exposed, which could incite generational risk. This study aimed to determine whether the F2 transcriptome already has genomic variation at the preimplantation embryo stage, and whether variations normalize, persist or compound in the third generation (F3). Methods: F0 female rats were fed a control or HF diet, then DM was induced in HF-fed dams on gestational day (GD)14, exposing F1 offspring and F2 primordial germ cells to hyperlipidemia, hyperglycemia and fetal hyperinsulinemia during the last third of pregnancy. F1 pups were reared by healthy dams and bred to produce F2 embryos (F2e) and F2 pups. F2 offspring were bred to produce F3 embryos (F3e). Embryos were assessed by a novel grading method, live cell imaging, and single-cell RNA sequencing. Results: Embryo grades were not different, but HF+DM F2e had more cells while F3e had fewer cells and overall fewer embryos. HF+DM F2e had similar mitochondria quantity but a downregulation of genes involved in lipid metabolism and more oxidative stress, consistent with mitochondrial dysfunction. They also had an upregulation of chromatin-remodeling genes. The predicted developmental effect is accelerated embryo aging and epigenetic drift. In contrast, HF+DM F3e had an adaptive stress response leading to increased mitochondria quantity and an upregulation of genes involved in mitochondrial respiration, metabolism, and genomic repair that led to a predicted developmental effect of delayed embryo maturation. Conclusions: Although pathways vary, both generations have metabolically linked differentially expressed genes that influence cell fate and developmental pathways. In conclusion, HF+DM pregnancy can program the early embryonic transcriptome for three generations, despite an intergenerational healthy diet. Full article
Show Figures

Figure 1

Back to TopTop