You are currently viewing a new version of our website. To view the old version click .
  • Tracked forImpact Factor
  • 4.2CiteScore
  • 20 daysTime to First Decision

Biomass

Biomass is an international, peer-reviewed, open access journal on biomass conversion and biorefinery published quarterly online by MDPI. 

All Articles (190)

Valorization of Amazonian Fruit Biomass for Biosurfactant Production and Nutritional Applications

  • Alan Moura Feio,
  • Giulian César da Silva Sá and
  • Alexandre Orsato
  • + 10 authors

Processing economically and socio-culturally significant Amazonian fruits—andiroba (Carapa guianensis Aubl.), açai (Euterpe oleracea Mart.), and babassu (Attalea speciosa Mart. ex Spreng.)—generates substantial biomass waste, posing critical environmental and waste management challenges. This study explored the valorization of these abundant residual biomasses as sustainable feedstocks for biosurfactant production by bacterium Pseudomonas aeruginosa P23G-02, while simultaneously profiling their nutritional value and broader implications for a circular bioeconomy. Through liquid fermentation, biosurfactants were produced at an approximate yield of 6 mg/mL. The isolated biosurfactants exhibited favorable properties, including emulsification indices of around 60% and surface tension reduction to below 30 mN/m, with the andiroba-derived biosurfactant identified as a rhamnolipid type. Nutritional profiling of the residues revealed significant energy values, reaching up to 656 kcal/100 g, with açai and babassu residues being carbohydrate-rich (exceeding 80%), and andiroba residues exhibiting a high lipid profile (up to 57%). These distinct compositions critically influenced biosurfactant yield. These findings underscore the viability of Amazonian fruit biomass as valuable resources for developing eco-friendly bioproducts and innovative waste management solutions. While highlighting a promising pathway for circular bioeconomy development, future research should address biosafety and explore alternative microbial hosts for applications in sensitive sectors such as food and nutrition.

2 October 2025

Phylogenetic tree based on 16S rRNA sequences from strain P23G-02 and Pseudomonas sp.

Microalgae in Mitigating Industrial Pollution: Bioremediation Strategies and Biomagnification Potential

  • Renu Geetha Bai,
  • Salini Chandrasekharan Nair and
  • Liina Joller-Vahter
  • + 1 author

The rapid growth of the human population and industrialization has intensified anthropogenic activities, leading to the release of various toxic chemicals into the environment, triggering significant risks to human health and ecosystem stability. One sustainable solution to remove toxic chemicals from various environmental matrices, such as water, air, and soil, is bioremediation, an approach utilizing biological agents. Microalgae, as the primary producers of the aquatic environment, offer a versatile bioremediation platform, where their metabolic processes break down and convert pollutants into less harmful substances, thereby mitigating the negative ecological impact. Besides the CO2 sequestration potential, microalgae are a source of renewable energy and numerous high-value biomolecules. Additionally, microalgae can mitigate various toxic chemicals through biosorption, bioaccumulation, and biodegradation. These remediation strategies propose a sustainable and eco-friendly approach to address environmental pollution. This review evaluates the microalgal mitigation of major environmental contaminants—heavy metals, pharmaceuticals and personal care products (PPCPs), persistent organic pollutants (POPs), flue gases, microplastics, and nanoplastics—linking specific microalgae removal mechanisms to pollutant-induced cellular responses. Each section explicitly addresses the effects of these pollutants on microalgae, microalgal bioremediation potential, bioaccumulation process, the risks of trophic transfer, and biomagnification in the food web. Herein, we highlight the current status of the microalgae-based bioremediation prospects, pollutant-induced microalgal toxicity, bioaccumulation, and consequential biomagnification. The novelty of this review lies in integrating biomagnification risks with the bioremediation potential of microalgae, providing a comprehensive perspective not yet addressed in the existing literature. Finally, we identify major research gaps and outline prospective strategies to optimize microalgal bioremediation while minimizing the unintended trophic transfer risks.

2 October 2025

Schematic representation of the bioremediation process by microalgae.

Fuel Properties of Torrefied Pellets from Maize Residues and Cocopeat Byproducts

  • Sunyong Park,
  • Seon Yeop Kim and
  • Kwang Cheol Oh
  • + 6 authors

Agricultural residues such as maize byproducts and discarded cocopeat substrates are abundant but underutilised biomass resources. Improving their fuel quality requires densification, such as pelletisation, combined with thermochemical upgrading. In this study, pellets were prepared by blending cocopeat and maize residues at weight ratios of 9:1, 7:3, and 5:5, followed by torrefaction at 220, 250, and 280 °C. Their fuel characteristics were evaluated through mass yield, elemental and proximate analyses, chemical composition, calorific value, combustion indices, and grindability. Results showed that increasing maize residue content reduced ash and fuel ratio but increased volatile matter, while cocopeat-rich pellets provided higher fixed carbon and lignin contents, improving thermal stability. Torrefaction significantly enhanced calorific value (up to 21.83 MJ/kg) and grindability, while increasing aromaticity. However, higher torrefaction severity decreased the combustibility index but improved volatile ignitability, indicating a trade-off between ignition behaviour and stable combustion. An optimal balance was observed at 250 °C, where energy yield and combustion performance were maximised. This study demonstrates the feasibility of valorising discarded cocopeat substrates, blended with maize residues, into renewable solid fuels, and provides practical guidance for optimising blending ratios and torrefaction conditions in waste-to-energy applications.

29 September 2025

Global hydroponics market changes (green: measured, blue: prediction) [8].

Food Waste Assessment and Household Biowaste Management in Latvia: Towards a Circular Economy

  • Natalija Cudecka-Purina,
  • Dace Arina and
  • Inara Teibe
  • + 4 authors

The transition to a circular economy requires effective food waste (FW) collection and recycling systems. This study aims to evaluate general public attitudes, behaviours, and systemic challenges related to FW sorting in Latvia, in light of the recent mandate for separate biowaste collection. The study covers two important sections—assessment of the amount of FW generated in primary production sectors, and a pilot case study of biodegradable waste sorting in selected households in Latvia. A mixed-methods approach was used, combining a nationwide survey of 458 entities involved in primary food production and 115 households, followed by 99 households with backyards voluntarily participating in a pilot case study to evaluate their BW management practices. The research findings reveal that there is a need to establish a precise/specific framework for the evaluation of FW for each sector; the development of appropriate coefficients would facilitate the process of estimating waste generated by primary production in the future. Research findings revealed that inhabitants are interested in home composting; however, the implementation of home composting requires active support from project implementers, including increasing environmental awareness and providing financial incentives. These results offer practical insights for municipalities and national stakeholders aiming to increase biowaste collection rates and support country-level broader sustainability goals. The research results have practical application with the possibility to replicate the best practices and recommendations to other countries or regions within the EU and beyond.

25 September 2025

Waste management system of Latvia and project areas. Source: [52].

News & Conferences

Issues

Open for Submission

Editor's Choice

Get Alerted

Add your email address to receive forthcoming issues of this journal.

XFacebookLinkedIn
Biomass - ISSN 2673-8783Creative Common CC BY license