Previous Issue
Volume 5, June
 
 

Biomass, Volume 5, Issue 3 (September 2025) – 9 articles

  • Issues are regarded as officially published after their release is announced to the table of contents alert mailing list.
  • You may sign up for e-mail alerts to receive table of contents of newly released issues.
  • PDF is the official format for papers published in both, html and pdf forms. To view the papers in pdf format, click on the "PDF Full-text" link, and use the free Adobe Reader to open them.
Order results
Result details
Select all
Export citation of selected articles as:
13 pages, 1841 KiB  
Article
Valorizing Biomass Waste: Hydrothermal Carbonization and Chemical Activation for Activated Carbon Production
by Fidel Vallejo, Diana Yánez, Luis Díaz-Robles, Marcelo Oyaneder, Serguei Alejandro-Martín, Rasa Zalakeviciute and Tamara Romero
Biomass 2025, 5(3), 45; https://doi.org/10.3390/biomass5030045 - 5 Aug 2025
Abstract
This study optimizes the production of activated carbons from hydrothermally carbonized (HTC) biomass using potassium hydroxide (KOH) and phosphoric acid (H3PO4) as activating agents. A 23 factorial experimental design evaluated the effects of agent-to-precursor ratio, dry impregnation time, [...] Read more.
This study optimizes the production of activated carbons from hydrothermally carbonized (HTC) biomass using potassium hydroxide (KOH) and phosphoric acid (H3PO4) as activating agents. A 23 factorial experimental design evaluated the effects of agent-to-precursor ratio, dry impregnation time, and activation duration on mass yield and iodine adsorption capacity. KOH-activated carbons achieved superior iodine numbers (up to 1289 mg/g) but lower mass yields (18–35%), reflecting enhanced porosity at the cost of material loss. Conversely, H3PO4 activation yielded higher mass retention (up to 54.86%) with moderate iodine numbers (up to 1117.3 mg/g), balancing porosity and yield. HTC pretreatment at 190 °C reduced the ash content, thereby enhancing the stability of hydrochar. These findings highlight the trade-offs between adsorption performance and process efficiency, with KOH suited for high-porosity applications (e.g., water purification) and H3PO4 for industrial scalability. The study advances biomass waste valorization, aligning with circular economy principles and offering sustainable solutions for environmental and industrial applications, such as water purification and energy storage. Full article
Show Figures

Figure 1

11 pages, 4560 KiB  
Article
Valorization of Forest Biomass Through Biochar for Static Floating Applications in Agricultural Uses
by Óscar González-Prieto, Luis Ortiz Torres and María Esther Costas Costas
Biomass 2025, 5(3), 44; https://doi.org/10.3390/biomass5030044 - 30 Jul 2025
Viewed by 180
Abstract
The feasibility of utilizing biochar as a static floating material for agricultural applications was researched to prevent evaporation from open water static storage systems or as a floating barrier in slurry pits, for instance. Five types of biochar were created from chips, bark, [...] Read more.
The feasibility of utilizing biochar as a static floating material for agricultural applications was researched to prevent evaporation from open water static storage systems or as a floating barrier in slurry pits, for instance. Five types of biochar were created from chips, bark, and pellets of pine and residues from two acacia species using a pyrolysis time between 60 and 120 min and mean temperatures between 380 and 690 °C in a simple double-chamber reactor. Biomass and biochar were characterized for their main properties: bulk density, moisture content, volatile matter, ash content, fixed carbon, and pH. Biochar was also evaluated through a basic floatability test over 27 days (648 h) in distilled water. The highest fixed carbon content was observed in pine bark biochar (69.5%), followed by the pine pellets (67.4%) and pine chips (63.4%). Despite their high carbon content, the pellets exhibited a low floatability level, whereas pine bark biochar showed superior static floatage times, together with chip and ground chip biochar. These results suggest that biochar produced from bark and wood chips may be suitable for application as floatability material in water or slurry management systems. These results warrant further research into the static floating of biochar. Full article
Show Figures

Figure 1

13 pages, 1873 KiB  
Article
Effect of Thickness Swelling and Termite Attack Resistance in Wood–Plastic Composites Produced with Pine Wood and Recycled Thermoplastics
by Emilly Silva, Yonny Lopez, Juarez Paes, Fernanda Maffioletti, Gabrielly Souza and Fabricio Gonçalves
Biomass 2025, 5(3), 43; https://doi.org/10.3390/biomass5030043 - 21 Jul 2025
Viewed by 427
Abstract
This research aimed to evaluate the biological resistance to xylophagous organisms and the dimensional stability related to water absorption in plastic wood panels manufactured by compression molding and produced with pine wood and recycled thermoplastics. The wood–plastic composites (WPCs) were prepared from 50% [...] Read more.
This research aimed to evaluate the biological resistance to xylophagous organisms and the dimensional stability related to water absorption in plastic wood panels manufactured by compression molding and produced with pine wood and recycled thermoplastics. The wood–plastic composites (WPCs) were prepared from 50% pine sawdust and 50% recycled plastics (polyethylene terephthalate-PET, high-density polyethylene-HDPE, and polypropylene-PP). The thickness swelling test was carried out by immersing of the WPC samples in water at room temperature (25–30 °C) and evaluating the total change in WPC thickness after 1500 h (≈9 weeks or two months). In addition, the coefficient of initial swelling was evaluated to verify the variability of the swelling. For the biological resistance evaluation of the WPCs, tests were carried out with soil or arboreal termites (Nasutitermes corniger) and drywood termites (Cryptotermes brevis). The WPC loss of mass and termite mortality were evaluated. The use of PP promoted the best response to thickness swelling. The simple mathematical model adopted offers real predictions to evaluate the thickness of the swelling of the compounds in a given time. For some variables there were no statistical differences. It was shown that treatment 3 (T3) presented visual damage values between 0.4 for drywood termites and 9.4 for soil termites, in addition to 26% termite mortality, represented by the lowest survival time of 12 days. The developed treatments have resistance to termite attacks; these properties can be an important starting point for its use on a larger scale by the panel industries. Full article
Show Figures

Figure 1

21 pages, 830 KiB  
Review
A Review of Chemical and Physical Analysis, Processing, and Repurposing of Brewers’ Spent Grain
by Joshua M. Henkin, Kalidas Mainali, Brajendra K. Sharma, Madhav P. Yadav, Helen Ngo and Majher I. Sarker
Biomass 2025, 5(3), 42; https://doi.org/10.3390/biomass5030042 - 16 Jul 2025
Viewed by 923
Abstract
Beer production produces significant amounts of brewers’ spent grain (BSG), a lignocellulosic by-product with important environmental and economic impacts. Despite its high moisture content and rapid microbial breakdown, BSG has a stable, nutrient-rich composition, especially high in protein, fiber, and polyphenolic compounds. While [...] Read more.
Beer production produces significant amounts of brewers’ spent grain (BSG), a lignocellulosic by-product with important environmental and economic impacts. Despite its high moisture content and rapid microbial breakdown, BSG has a stable, nutrient-rich composition, especially high in protein, fiber, and polyphenolic compounds. While its perishability limits direct use in food systems, BSG is often repurposed as livestock feed. Recent advances in bioprocessing and extraction technologies have expanded their use across different sectors. This review explores the composition of crude BSG and evaluates innovative valorization methods, including recovering bioactive compounds with pharmaceutical and nutraceutical value, and converting them into biofuels such as biogas, biodiesel, and bioethanol. Special focus is given to methods involving enzymatic hydrolysis, fermentation, and chemical extraction to isolate proteins, peptides, amino acids, sugars, and polyphenols. By analyzing emerging applications and industrial scalability challenges, this review highlights BSG’s growing role within circular economy models and its potential to promote sustainable innovations in both the brewing industry and the wider bioeconomy. Full article
Show Figures

Figure 1

23 pages, 1237 KiB  
Review
Resource Recovery from Green Tide Biomass: Sustainable Cascading Biorefinery Strategies for Ulva spp.
by Gianluca Ottolina, Federica Zaccheria and Jacopo Paini
Biomass 2025, 5(3), 41; https://doi.org/10.3390/biomass5030041 - 2 Jul 2025
Viewed by 514
Abstract
This review examines sustainable cascading biorefinery strategies for the green alga Ulva, which is globally prevalent in eutrophic marine waters and often forms extensive “green tides.” These blooms cause substantial environmental and economic damage to coastal communities. The primary target products within [...] Read more.
This review examines sustainable cascading biorefinery strategies for the green alga Ulva, which is globally prevalent in eutrophic marine waters and often forms extensive “green tides.” These blooms cause substantial environmental and economic damage to coastal communities. The primary target products within an Ulva biorefinery typically encompass salts, lipids, proteins, cellulose, and ulvan. Each of these components possesses unique properties and diverse applications, contributing to the economic robustness of the biorefinery. Salts can be repurposed for agricultural or even human consumption. Lipids offer high-value applications in nutraceuticals and animal feed. Proteins present significant potential as plant-based nutritional supplements. Cellulose can be transformed into various advanced materials. Finally, ulvan, a polyanionic oligosaccharide unique to Ulva, holds promise due to its distinct properties, particularly in the biomedical field. Furthermore, state-of-the-art chemical modifications of ulvan are presented with the aim of tailoring its properties and broadening its potential applications. Future research should prioritize optimizing these integrated extraction and fractionation processes. Furthermore, a multi-product biorefining approach, integrated with robust Life Cycle Assessment studies, is vital for transforming this environmental challenge into a significant opportunity for sustainable resource valorization and economic growth. Full article
Show Figures

Figure 1

29 pages, 5081 KiB  
Article
Production, Characterization, and Application of KOH-Activated Biochar from Rice Straw for Azo Dye Adsorption
by Megananda Eka Wahyu, Damayanti Damayanti and Ho Shing Wu
Biomass 2025, 5(3), 40; https://doi.org/10.3390/biomass5030040 - 1 Jul 2025
Viewed by 423
Abstract
This study explored the production and activation of biochar from rice straw residue for dye adsorption applications. Rice straw, a widely available but underutilized biomass, was processed to isolate lignin and generate biochar through pyrolysis at 450 °C and 550 °C. Activation using [...] Read more.
This study explored the production and activation of biochar from rice straw residue for dye adsorption applications. Rice straw, a widely available but underutilized biomass, was processed to isolate lignin and generate biochar through pyrolysis at 450 °C and 550 °C. Activation using chemical agents (e.g., KOH and NaOH) was performed to enhance surface area and porosity. Among the tested conditions, KOH activation at a char-to-agent ratio of 1:3 produced activated carbon at 800 °C with the highest BET surface area (835.2 m2/g), and high fixed carbon (44.4%) after HCl washing. Thermogravimetric analysis was used to investigate pyrolysis kinetics, with activation energies determined using the Kissinger, Flynn–Wall–Ozawa, and Kissinger–Akahira–Sunose models. The brown solid showed a higher activation energy (264 kJ/mol) compared to isolated lignin (194 kJ/mol), indicating that more energy is required for decomposition. The AC was evaluated for the adsorption of methylene blue (MB) and methyl orange (MO) from aqueous solutions. Both dyes followed the Langmuir isotherm model, indicating that monolayer adsorption occurred. The maximum adsorption capacities reached 222 mg/g for MB and 244 mg/g for MO at 303 K, with higher values at elevated temperatures. Adsorption followed a pseudo-second-order kinetic model and was governed by a physisorption mechanism, as supported by thermodynamic analysis (ΔH < 20 kJ/mol and Ea < 40 kJ/mol). These findings demonstrate that KOH-activated biochar from rice straw residue is a high-performance, low-cost adsorbent for dye removal, contributing to sustainable biomass utilization and wastewater treatment. Full article
Show Figures

Figure 1

18 pages, 2017 KiB  
Article
Biochar-Enriched Organic Fertilizers from Sugar Industry Waste: A Sustainable Approach to Soil Fertility and Crop Growth
by Helitha Nilmalgoda, Jayashan Bandara, Isuru Wijethunga, Asanga Ampitiyawatta and Kaveenga Koswattage
Biomass 2025, 5(3), 39; https://doi.org/10.3390/biomass5030039 - 1 Jul 2025
Viewed by 297
Abstract
This study investigates biochar-enriched organic fertilizers made from bagasse, ash, spent wash, and cane tops, assessing their impact on corn growth over 45 days. A randomized complete block design with three replicates was used, testing six formulations with biochar levels at 0%, 10%, [...] Read more.
This study investigates biochar-enriched organic fertilizers made from bagasse, ash, spent wash, and cane tops, assessing their impact on corn growth over 45 days. A randomized complete block design with three replicates was used, testing six formulations with biochar levels at 0%, 10%, and 20%, along with soil-only and commercial fertilizer controls. Treatments T5 (bagasse + ash + spent wash + cane tops), T11 (T5 + 10% biochar), and T17 (T5 + 20% biochar) showed the best results for plant height, leaf development, and biomass production, with T17 performing the best for growth, biomass, and girth. The biochar in T17 had a pH of 9.37 ± 0.16, 18.00 ± 1.25% ash content, and a surface area of 144.58 m2/g. Nutrient analysis of the compost showed 2.85% potassium, 1.12% phosphorus, 1.85% nitrogen, 4.1% calcium, 0.23% magnesium, and 130 mg/kg zinc. The elemental composition was 68.50% carbon, 4.50% hydrogen, 6.00% nitrogen, and 25.30% oxygen, with 85.00% total organic carbon (TOC). This study concludes that T17 is the most effective formulation, offering both environmental and financial benefits, with composting potentially generating $11.16 million in profit, compared to the $19.32 million spent annually on waste management in Sri Lanka’s sugar industry. Full article
Show Figures

Figure 1

2 pages, 124 KiB  
Editorial
Updating the Aims and Scope of BIOMASS: Novel Endeavors and Perspectives
by Dimitris P. Makris
Biomass 2025, 5(3), 38; https://doi.org/10.3390/biomass5030038 - 23 Jun 2025
Viewed by 264
Abstract
Biomass was launched in 2021, aiming at providing an open access reservoir of knowledge pertaining to the field of biomass and its harnessing [...] Full article
21 pages, 1146 KiB  
Review
Catalytic Biomass Gasification for Syngas Production: Recent Progress in Tar Reduction and Future Perspectives
by Gitanjali Jothiprakash, Prabha Balasubramaniam, Senthilarasu Sundaram and Desikan Ramesh
Biomass 2025, 5(3), 37; https://doi.org/10.3390/biomass5030037 - 20 Jun 2025
Cited by 1 | Viewed by 922
Abstract
Biomass gasification is an effective process for converting organic wastes into syngas. Syngas is a biofuel that possesses several potential applications in the energy sector. However, the major bottleneck for the commercialization of this technology is tar production in biomass gasification, which affects [...] Read more.
Biomass gasification is an effective process for converting organic wastes into syngas. Syngas is a biofuel that possesses several potential applications in the energy sector. However, the major bottleneck for the commercialization of this technology is tar production in biomass gasification, which affects gasifier performance and syngas yield/quality. Tar can be destructed by adopting in situ or ex situ modes of utilizing catalysts in biomass gasification. The added advantage of tar reduction is enhanced syngas energy content. Despite their advantages, catalysts face challenges such as high costs, declining performance over time, and difficulties in regeneration and recycling. Deactivation can also occur due to poisoning, fouling, and carbon buildup. While some natural materials have been tested as alternative materials, the financial sustainability and affordability of catalysts remain crucial for large-scale syngas production. This paper offers an overview of tar reduction strategies and the role of various catalysts in the gasification process and future perspectives on catalyst development for biomass gasification. Full article
Show Figures

Figure 1

Previous Issue
Back to TopTop