A Comprehensive Review on Sustainable Conversion of Spent Coffee Grounds into Energy Resources and Environmental Applications
Abstract
1. Introduction
2. SCG Origin and Composition
3. Valorization Processes
3.1. Biological Processes
Anaerobic Digestion
3.2. Thermochemical Processes (Pyrolysis, Gasification, and Hydrothermal Carbonization)
3.2.1. Pyrolysis
- Drying phase (100–120 °C): Moisture is removed from the biomass, preparing it for thermal decomposition.
- Volatilization (~275 °C): Light gases such as CO2, CO, N2, methanol, and acetic acid begin to evolve as temperature increases.
- Exothermic decomposition (280–350 °C): Complex mixtures of chemical substances (i.e., ketones, aldehydes, phenols, esters), CO2, CO, CH4, C2H6, and H2 are removed through breaking the weakest chemical bonds.
- Evaporation and residual carbon formation (~350 °C): Remaining volatiles are driven off, resulting in increased yields of H2, CO, and fixed carbon. The solid residue becomes biochar. The thermal decomposition of more stable biomass components, such as lignin, may continue at higher temperatures.
3.2.2. Chemical Activation
3.2.3. Physical Activation
3.2.4. Gasification of Spent Coffee Grounds: Process Mechanisms, Reactor Designs, and Performance Drivers
Stages of the Gasification Process
- Drying: Biomass moisture levels directly influence gas quality and energy efficiency. For optimal gasification, SCGs should be dried to a moisture content of 10–20%. Lower moisture levels (below 2%) improve thermal conversion by reducing energy losses during evaporation [74]. Solar drying is cost-effective but slow and weather-dependent, whereas electric dryers offer faster rates at higher energy costs [76].
- Pyrolysis: In this stage (125–500 °C), SCGs undergo thermal decomposition in an oxygen-limited environment. Volatile compounds are released, leaving behind char, liquid tars, and gases. Pyrolysis of SCGs has been shown to yield significant carbon-rich gases and tar, necessitating careful process control [76].
- Oxidation (combustion): A limited amount of oxygen or air is introduced to partially combust the biomass, generating the heat required for subsequent endothermic reactions. Operating at 1100–1500 °C, this stage produces CO, CO2, H2, and H2O and provides thermal support to pyrolysis and reduction zones [74]. Inert gases such as N2 and CO2 moderate system temperature and impact syngas quality [76].
- Reduction: Char reacts with steam, CO2, and H2O to produce CO and H2 in a highly endothermic zone (800–1000 °C). The reduction zone also plays a critical role in tar reforming, addressing one of the key limitations of SCG gasification—its high tar yield [74]. Key reactions include the water–gas shift, CH4 reforming, and Boudouard reaction [76].
Reactor Configurations for SCG Gasification
Fixed Bed Gasifiers
Fluidized Bed Gasifiers
Advanced Gasifier Designs
Key Parameters Influencing Gasification Efficiency
Temperature
Pressure
Gasifying Agent
- Air is the most economical option but yields low-calorific syngas due to nitrogen dilution.
- Steam and oxygen mixtures produce syngas with higher heating values.
- Steam alone improves H2 yield and facilitates tar reforming, especially in lignin-rich biomass such as SCGs.
- Supercritical water enables gasification of wet biomass without the need for drying, offering energy savings.
Air–Fuel Ratio and Equivalence Ratio (ER)
Residence Time
3.2.5. Hydrothermal Conversion of SCGs: Principles and Applications
Hydrothermal Carbonization (HTC)
Hydrothermal Liquefaction (HTL)
Hydrothermal Gasification (HTG)
- Aqueous Phase Reforming (APR): Conducted at 215–265 °C in the presence of a heterogeneous catalyst to produce H2 and CO2. However, this process is generally unsuitable unless H2 is consumed in situ, such as for biomass hydrogenation [81].
- Catalytic Gasification in a Near-Critical State: Operates around 350–400 °C using a catalyst to convert CO into CH4 and CO2. Methanation reactions play a key role under these conditions.
- Supercritical Water Gasification (SCWG): Carried out at 600–700 °C using supercritical water, with or without a catalyst. This method yields primarily H2 and CO2 and is particularly effective for biomass with >30% moisture content, including very wet feedstocks (up to 90 wt%).
4. Products and Applications
4.1. Solid Phase
4.1.1. Biochar and Applications of SCG-Derived Biochar
Adsorption Applications
Energy Storage Applications
4.1.2. Activated Carbon (AC)
Adsorption Applications
Supercapacitor Applications
Battery Applications
Sensor Applications
Microbial Fuel Cells
4.1.3. Compost and Organic Fertilizers
- Free from harmful heavy metals, SCGs reduce the risk of soil contamination.
- Their high water-holding capacity helps maintain soil moisture and regulate temperature when used as mulch.
- SCGs can immobilize pesticide residues and heavy metals, reducing their mobility in the soil.
- Improvements in leaf development, rosette diameter, and nutrient bioavailability have been observed in various crops.
4.1.4. Bio-Based Materials: Subgrade Materials, Plastics, Composites, and Adsorbents Subgrade and Construction Materials
Bioplastics and Polymer Composites
Biodegradable Polymers: PHAs and PHBs
SCG-Based Adsorbents for Water Purification
Advanced Nanomaterials and Photocatalytic Applications
4.2. Liquid Phase
4.2.1. Bio-Oil
4.2.2. Bioactive Extracts
4.3. Gas Phase: Biogas and Syngas
5. Comprehensive Sustainability Assessment of Spent Coffee Grounds Valorization
5.1. Comparative Life Cycle Assessments (LCAs)
5.2. Techno-Economic and Feasibility Analyses
- Profitability improves significantly when SCG valorization systems integrate co-products (e.g., activated carbon, biogas).
- Pyrolysis and biogas routes consistently show higher returns and lower risk than biodiesel under current market assumptions.
- Energy integration and process efficiency—particularly in drying, heating, and solvent use—strongly influence feasibility.
- On-site processing and consistent feedstock supply (e.g., coffee factories vs. retail establishments) lower transportation and variability costs.
5.3. Socio-Economic and Policy Considerations
5.4. Integrated Sustainability Assessments and Future Prospects
- Many promising processes remain at lab or pilot scale. Studies like Valencia-Isaza et al. [181] stress the need for continuous process design and adoption of green extraction methods to reduce hexane and energy footprints in multi-product biorefineries.
- While most studies focus on GHG emissions and NPV, broader metrics such as ecosystem services, human toxicity, and social acceptance are seldom included. As Schmidt Rivera et al. [176] cautioned, ignoring these can lead to misguided policy and investment decisions.
5.5. Alignment with Sustainable Development Goals (SDGs)
6. Challenges and Recommendations
6.1. Key Challenges in SCG Valorization
6.2. Recommendations for Future Research and Policy
7. Conclusions
Funding
Acknowledgments
Conflicts of Interest
References
- NASA Carbon Dioxide|Vital Signs—Climate Change: Vital Signs of the Planet. Available online: https://climate.nasa.gov/vital-signs/carbon-dioxide/ (accessed on 23 August 2025).
- Thambimuthu, K.; Davison, J. Overview of CO2 Capture. In Carbon Dioxide Capture: An Effective Way to Combat Global Warming; Springer: Cham, Switzerland, 2015; pp. 17–25. [Google Scholar] [CrossRef]
- Prastiyo, S.E.; Irham; Hardyastuti, S.; Jamhari. How Agriculture, Manufacture, and Urbanization Induced Carbon Emission? The Case of Indonesia. Environ. Sci. Pollut. Res. 2020, 27, 42092–42103. [Google Scholar] [CrossRef] [PubMed]
- Antar, M.; Lyu, D.; Nazari, M.; Shah, A.; Zhou, X.; Smith, D.L. Biomass for a Sustainable Bioeconomy: An Overview of World Biomass Production and Utilization. Renew. Sustain. Energy Rev. 2021, 139, 110691. [Google Scholar] [CrossRef]
- Fahmy, T.Y.A.; Fahmy, Y.; Mobarak, F.; El-Sakhawy, M.; Abou-Zeid, R.E. Biomass Pyrolysis: Past, Present, and Future. Environ. Dev. Sustain. 2020, 22, 17–32. [Google Scholar] [CrossRef]
- Wang, G.; Dai, Y.; Yang, H.; Xiong, Q.; Wang, K.; Zhou, J.; Li, Y.; Wang, S. A Review of Recent Advances in Biomass Pyrolysis. Energy and Fuels 2020, 34, 15557–15578. [Google Scholar] [CrossRef]
- Ahanchi, M.; Jafary, T.; Yeneneh, A.M.; Rupani, P.F.; Shafizadeh, A.; Shahbeik, H.; Pan, J.; Tabatabaei, M.; Aghbashlo, M. Review on Waste Biomass Valorization and Power Management Systems for Microbial Fuel Cell Application. J. Clean. Prod. 2022, 380, 134994. [Google Scholar] [CrossRef]
- Yamakawa, C.K.; Qin, F.; Mussatto, S.I. Advances and Opportunities in Biomass Conversion Technologies and Biorefineries for the Development of a Bio-Based Economy. Biomass Bioenergy 2018, 119, 54–60. [Google Scholar] [CrossRef]
- Ingle, A.P.; Saxena, S.; Moharil, M.P.; Rivaldi, J.D.; Ramos, L.; Chandel, A.K. Production of Biomaterials and Biochemicals from Lignocellulosic Biomass through Sustainable Approaches: Current Scenario and Future Perspectives. Biotechnol. Sustain. Mater. 2025, 2, 3. [Google Scholar] [CrossRef]
- Mukherjee, A.; Borugadda, V.B.; Dynes, J.J.; Niu, C.; Dalai, A.K. Carbon Dioxide Capture from Flue Gas in Biochar Produced from Spent Coffee Grounds: Effect of Surface Chemistry and Porous Structure. J. Environ. Chem. Eng. 2021, 9, 106049. [Google Scholar] [CrossRef]
- Kourmentza, C.; Economou, C.N.; Tsafrakidou, P.; Kornaros, M. Spent Coffee Grounds Make Much More than Waste: Exploring Recent Advances and Future Exploitation Strategies for the Valorization of an Emerging Food Waste Stream. J. Clean. Prod. 2018, 172, 980–992. [Google Scholar] [CrossRef]
- Zengin, G.; Sinan, K.I.; Mahomoodally, M.F.; Angeloni, S.; Mustafa, A.M.; Vittori, S.; Maggi, F.; Caprioli, G. Chemical Composition, Antioxidant and Enzyme Inhibitory Properties of Different Extracts Obtained from Spent Coffee Ground and Coffee Silverskin. Foods 2020, 9, 713. [Google Scholar] [CrossRef]
- Fernandes, A.S.; Mello, F.V.C.; Thode Filho, S.; Carpes, R.M.; Honório, J.G.; Marques, M.R.C.; Felzenszwalb, I.; Ferraz, E.R.A. Impacts of Discarded Coffee Waste on Human and Environmental Health. Ecotoxicol. Environ. Saf. 2017, 141, 30–36. [Google Scholar] [CrossRef]
- Bomfim, A.S.C.d.; Oliveira, D.M.d.; Voorwald, H.J.C.; Benini, K.C.C.d.C.; Dumont, M.-J.; Rodrigue, D. Valorization of Spent Coffee Grounds as Precursors for Biopolymers and Composite Production. Polymers 2022, 14, 437. [Google Scholar] [CrossRef] [PubMed]
- Spent Coffee Grounds Could Make Concrete Stronger|CNN. Available online: https://edition.cnn.com/world/spent-coffee-grounds-could-make-concrete-stronger-scn-climate-spc (accessed on 13 July 2025).
- Hechmi, S.; Guizani, M.; Kallel, A.; Zoghlami, R.I.; Ben Zrig, E.; Louati, Z.; Jedidi, N.; Trabelsi, I. Impact of Raw and Pre-Treated Spent Coffee Grounds on Soil Properties and Plant Growth: A Mini-Review. Clean Technol. Environ. Policy 2023, 25, 2831–2843. [Google Scholar] [CrossRef]
- Nosek, R.; Tun, M.M.; Juchelkova, D. Energy Utilization of Spent Coffee Grounds in the Form of Pellets. Energies 2020, 13, 1235. [Google Scholar] [CrossRef]
- Atabani, A.E.; Mahmoud, E.; Aslam, M.; Naqvi, S.R.; Juchelková, D.; Bhatia, S.K.; Badruddin, I.A.; Khan, T.M.Y.; Hoang, A.T.; Palacky, P. Emerging Potential of Spent Coffee Ground Valorization for Fuel Pellet Production in a Biorefinery. Environ. Dev. Sustain. 2023, 25, 7585–7623. [Google Scholar] [CrossRef] [PubMed]
- Lee, X.J.; Ong, H.C.; Gao, W.; Ok, Y.S.; Chen, W.H.; Goh, B.H.H.; Chong, C.T. Solid Biofuel Production from Spent Coffee Ground Wastes: Process Optimisation, Characterisation and Kinetic Studies. Fuel 2021, 292, 120309. [Google Scholar] [CrossRef]
- Huang, J.; Li, B.; Xian, X.; Hu, Y.; Lin, X. Efficient Bioethanol Production from Spent Coffee Grounds Using Liquid Hot Water Pretreatment without Detoxification. Fermentation 2024, 10, 436. [Google Scholar] [CrossRef]
- Milanković, V.; Tasić, T.; Brković, S.; Potkonjak, N.; Unterweger, C.; Bajuk-Bogdanović, D.; Pašti, I.; Lazarević-Pašti, T. Spent Coffee Grounds-Derived Carbon Material as an Effective Adsorbent for Removing Multiple Contaminants from Wastewater: A Comprehensive Kinetic, Isotherm, and Thermodynamic Study. J. Water Process Eng. 2024, 63, 105507. [Google Scholar] [CrossRef]
- Solomakou, N.; Tsafrakidou, P.; Goula, A.M. Valorization of SCG through Extraction of Phenolic Compounds and Synthesis of New Biosorbent. Sustainability 2022, 14, 9358. [Google Scholar] [CrossRef]
- Atabani, A.E.; Ali, I.; Naqvi, S.R.; Badruddin, I.A.; Aslam, M.; Mahmoud, E.; Almomani, F.; Juchelková, D.; Atelge, M.R.; Khan, T.M.Y. A State-of-the-Art Review on Spent Coffee Ground (SCG) Pyrolysis for Future Biorefinery. Chemosphere 2022, 286, 131730. [Google Scholar] [CrossRef]
- Durán-Aranguren, D.D.; Robledo, S.; Gomez-Restrepo, E.; Valencia, J.W.A.; Tarazona, N.A. Scientometric Overview of Coffee By-Products and Their Applications. Molecules 2021, 26, 7605. [Google Scholar] [CrossRef]
- Franca, A.S.; Oliveira, L.S. Potential Uses of Spent Coffee Grounds in the Food Industry. Foods 2022, 11, 2064. [Google Scholar] [CrossRef]
- Sisti, L.; Celli, A.; Totaro, G.; Cinelli, P.; Signori, F.; Lazzeri, A.; Bikaki, M.; Corvini, P.; Ferri, M.; Tassoni, A.; et al. Monomers, Materials and Energy from Coffee by-Products: A Review. Sustainability 2021, 13, 6921. [Google Scholar] [CrossRef]
- Johnson, K.; Liu, Y.; Lu, M. A Review of Recent Advances in Spent Coffee Grounds Upcycle Technologies and Practices. Front. Chem. Eng. 2022, 4, 838605. [Google Scholar] [CrossRef]
- Hemati, S.; Udayakumar, S.; Wesley, C.; Biswal, S.; Nur-A-Tomal, M.S.; Sarmadi, N.; Pahlevani, F.; Sahajwalla, V. Thermal Transformation of Secondary Resources of Carbon-Rich Wastes into Valuable Industrial Applications. J. Compos. Sci. 2023, 7, 8. [Google Scholar] [CrossRef]
- Lee, Y.G.; Cho, E.J.; Maskey, S.; Nguyen, D.T.; Bae, H.J. Value-Added Products from Coffee Waste: A Review. Molecules 2023, 28, 3562. [Google Scholar] [CrossRef] [PubMed]
- Janissen, B.; Huynh, T. Chemical Composition and Value-Adding Applications of Coffee Industry by-Products: A Review. Resour. Conserv. Recycl. 2018, 128, 110–117. [Google Scholar] [CrossRef]
- Demirbaş, A.; Arin, G. An Overview of Biomass Pyrolysis. Energy Sources 2002, 24, 471–482. [Google Scholar] [CrossRef]
- Matrapazi, V.K.; Zabaniotou, A. Experimental and Feasibility Study of Spent Coffee Grounds Upscaling via Pyrolysis towards Proposing an Eco-Social Innovation Circular Economy Solution. Sci. Total Environ. 2020, 718, 137316. [Google Scholar] [CrossRef]
- Uddin, M.N.; Techato, K.; Taweekun, J.; Rahman, M.M.; Rasul, M.G.; Mahlia, T.M.I.; Ashrafur, S.M. An Overview of Recent Developments in Biomass Pyrolysis Technologies. Energies 2018, 11, 3115. [Google Scholar] [CrossRef]
- Colantoni, A.; Paris, E.; Bianchini, L.; Ferri, S.; Marcantonio, V.; Carnevale, M.; Palma, A.; Civitarese, V.; Gallucci, F. Spent Coffee Ground Characterization, Pelletization Test and Emissions Assessment in the Combustion Process. Sci. Rep. 2021, 11, 5119. [Google Scholar] [CrossRef]
- Andreola, F.; Borghi, A.; Pedrazzi, S.; Allesina, G.; Tartarini, P.; Lancellotti, I.; Barbieri, L. Spent Coffee Grounds in the Production of Lightweight Clay Ceramic Aggregates in View of Urban and Agricultural Sustainable Development. Materials 2019, 12, 3581. [Google Scholar] [CrossRef]
- Afolabi, O.O.D.; Sohail, M.; Cheng, Y.L. Optimisation and Characterisation of Hydrochar Production from Spent Coffee Grounds by Hydrothermal Carbonisation. Renew. Energy 2020, 147, 1380–1391. [Google Scholar] [CrossRef]
- AlMallahi, M.N.; Maen Asaad, S.; Rocha-Meneses, L.; Inayat, A.; Said, Z.; El Haj Assad, M.; Elgendi, M. A Case Study on Bio-Oil Extraction from Spent Coffee Grounds Using Fast Pyrolysis in a Fluidized Bed Reactor. Case Stud. Chem. Environ. Eng. 2023, 8, 100529. [Google Scholar] [CrossRef]
- Brachi, P.; Santes, V.; Torres-Garcia, E. Pyrolytic Degradation of Spent Coffee Ground: A Thermokinetic Analysis through the Dependence of Activation Energy on Conversion and Temperature. Fuel 2021, 302, 120995. [Google Scholar] [CrossRef]
- Figueroa Campos, G.A.; Perez, J.P.H.; Block, I.; Sagu, S.T.; Saravia Celis, P.; Taubert, A.; Rawel, H.M. Preparation of Activated Carbons from Spent Coffee Grounds and Coffee Parchment and Assessment of Their Adsorbent Efficiency. Processes 2021, 9, 1396. [Google Scholar] [CrossRef]
- Kibret, H.A.; Kuo, Y.L.; Ke, T.Y.; Tseng, Y.H. Gasification of Spent Coffee Grounds in a Semi-Fluidized Bed Reactor Using Steam and CO2 Gasification Medium. J. Taiwan Inst. Chem. Eng. 2021, 119, 115–127. [Google Scholar] [CrossRef]
- Allesina, G.; Pedrazzi, S.; Allegretti, F.; Tartarini, P. Spent Coffee Grounds as Heat Source for Coffee Roasting Plants: Experimental Validation and Case Study. Appl. Therm. Eng. 2017, 126, 730–736. [Google Scholar] [CrossRef]
- López-Linares, J.C.; García-Cubero, M.T.; Coca, M.; Lucas, S. A Biorefinery Approach for the Valorization of Spent Coffee Grounds to Produce Antioxidant Compounds and Biobutanol. Biomass Bioenergy 2021, 147, 106026. [Google Scholar] [CrossRef]
- Zhang, S.; Zhong, X.; Chen, J.; Nilghaz, A.; Yun, X.; Wan, X.; Tian, J. Manufacturing Biodegradable Lignocellulosic Films with Tunable Properties from Spent Coffee Grounds: A Sustainable Alternative to Plastics. Int. J. Biol. Macromol. 2024, 273, 132918. [Google Scholar] [CrossRef]
- Jomnonkhaow, U.; Plangklang, P.; Reungsang, A.; Peng, C.Y.; Chu, C.Y. Valorization of Spent Coffee Grounds through Integrated Bioprocess of Fermentable Sugars, Volatile Fatty Acids, Yeast-Based Single-Cell Protein and Biofuels Production. Bioresour. Technol. 2024, 393, 130107. [Google Scholar] [CrossRef]
- Atabani, A.E.; Al-Muhtaseb, A.H.; Kumar, G.; Saratale, G.D.; Aslam, M.; Khan, H.A.; Said, Z.; Mahmoud, E. Valorization of Spent Coffee Grounds into Biofuels and Value-Added Products: Pathway towards Integrated Bio-Refinery. Fuel 2019, 254, 115640. [Google Scholar] [CrossRef]
- Sieradzka, M.; Kirczuk, C.; Kalemba-rec, I.; Mlonka-mędrala, A.; Magdziarz, A. Pyrolysis of Biomass Wastes into Carbon Materials. Energies 2022, 15, 1941. [Google Scholar] [CrossRef]
- Sumantri, I.; Kusnadi, P.; Handoyo, I.G.R.; Kumoro, A.C. Biodigestion of Mixed Substrates of Cow Manure-Delignified Spent Coffee Ground (DSCG) Using Microorganism Enhancer for Biogas Production and Its Kinetic Study. Environ. Res. Eng. Manag. 2022, 78, 96–109. [Google Scholar] [CrossRef]
- Anto, S.; Sudhakar, M.P.; Shan Ahamed, T.; Samuel, M.S.; Mathimani, T.; Brindhadevi, K.; Pugazhendhi, A. Activation Strategies for Biochar to Use as an Efficient Catalyst in Various Applications. Fuel 2021, 285, 119205. [Google Scholar] [CrossRef]
- Abuelnoor, N.; AlHajaj, A.; Khaleel, M.; Vega, L.F.; Abu-Zahra, M.R.M. Activated Carbons from Biomass-Based Sources for CO2 Capture Applications. Chemosphere 2021, 282, 131111. [Google Scholar] [CrossRef]
- Ischia, G.; Fiori, L. Hydrothermal Carbonization of Organic Waste and Biomass: A Review on Process, Reactor, and Plant Modeling. Waste Biomass Valorization 2021, 12, 2797–2824. [Google Scholar] [CrossRef]
- Singh, S.K. Biological Treatment of Plant Biomass and Factors Affecting Bioactivity. J. Clean. Prod. 2021, 279, 123546. [Google Scholar] [CrossRef]
- Yu, Z.; Ma, H.; Liu, X.; Wang, M.; Wang, J. Review in Life Cycle Assessment of Biomass Conversion through Pyrolysis-Issues and Recommendations. Green Chem. Eng. 2022, 3, 304–312. [Google Scholar] [CrossRef]
- Song, B.; Lin, R.; Lam, C.H.; Wu, H.; Tsui, T.H.; Yu, Y. Recent Advances and Challenges of Inter-Disciplinary Biomass Valorization by Integrating Hydrothermal and Biological Techniques. Renew. Sustain. Energy Rev. 2021, 135, 110370. [Google Scholar] [CrossRef]
- Mahmoud, E.; Atabani, A.E.; Badruddin, I.A. Valorization of Spent Coffee Grounds for Biogas Production: A Circular Bioeconomy Approach for a Biorefinery. Fuel 2022, 328, 125296. [Google Scholar] [CrossRef]
- Paul, S.; Dutta, A. Challenges and Opportunities of Lignocellulosic Biomass for Anaerobic Digestion. Resour. Conserv. Recycl. 2018, 130, 164–174. [Google Scholar] [CrossRef]
- Alegre, P.; Barrera, J.; Carriazo, A. An Overview of Recent Developments in Slant Submanifolds. Complex Geom. Slant Submanifolds 2022, 74, 1–17. [Google Scholar] [CrossRef]
- Reza, M.S.; Yun, C.S.; Afroze, S.; Radenahmad, N.; Bakar, M.S.A.; Saidur, R.; Taweekun, J.; Azad, A.K. Preparation of Activated Carbon from Biomass and Its’ Applications in Water and Gas Purification, a Review. Arab J. Basic Appl. Sci. 2020, 27, 208–238. [Google Scholar] [CrossRef]
- Tursi, A. A Review on Biomass: Importance, Chemistry, Classification, and Conversion. Biofuel Res. J. 2019, 6, 962–979. [Google Scholar] [CrossRef]
- Primaz, C.T.; Schena, T.; Lazzari, E.; Caramão, E.B.; Jacques, R.A. Influence of the Temperature in the Yield and Composition of the Bio-Oil from the Pyrolysis of Spent Coffee Grounds: Characterization by Comprehensive Two Dimensional Gas Chromatography. Fuel 2018, 232, 572–580. [Google Scholar] [CrossRef]
- Heidarinejad, Z.; Dehghani, M.H.; Heidari, M.; Javedan, G.; Ali, I.; Sillanpää, M. Methods for Preparation and Activation of Activated Carbon: A Review. Environ. Chem. Lett. 2020, 18, 393–415. [Google Scholar] [CrossRef]
- Wirawan, T.; Koesnarpadi, S.; Widodo, N.T. Study of Rhodamine B Adsorption onto Activated Carbon from Spent Coffee Grounds. In AIP Conference Proceedings, Proceedings of the 14th Joint Conference On Chemistry 2019, Surakarta, Indonesia, 10–11 September 2019; AIP Publishing LLC: Melville, NY, USA, 2020; Volume 2237, p. 20007. [Google Scholar]
- Chiu, Y.H.; Lin, L.Y. Effect of Activating Agents for Producing Activated Carbon Using a Facile One-Step Synthesis with Waste Coffee Grounds for Symmetric Supercapacitors. J. Taiwan Inst. Chem. Eng. 2019, 101, 177–185. [Google Scholar] [CrossRef]
- Chiang, C.H.; Chen, J.; Lin, J.H. Preparation of Pore-Size Tunable Activated Carbon Derived from Waste Coffee Grounds for High Adsorption Capacities of Organic Dyes. J. Environ. Chem. Eng. 2020, 8, 103929. [Google Scholar] [CrossRef]
- Rosson, E.; Garbo, F.; Marangoni, G.; Bertani, R.; Lavagnolo, M.C.; Moretti, E.; Talon, A.; Mozzon, M.; Sgarbossa, P. Activated Carbon from Spent Coffee Grounds: A Good Competitor of Commercial Carbons for Water Decontamination. Appl. Sci. 2020, 10, 5598. [Google Scholar] [CrossRef]
- Ferraz, F.M.; Yuan, Q. Organic Matter Removal from Landfill Leachate by Adsorption Using Spent Coffee Grounds Activated Carbon. Sustain. Mater. Technol. 2020, 23, e00141. [Google Scholar] [CrossRef]
- Kim, M.J.; Choi, S.W.; Kim, H.; Mun, S.; Lee, K.B. Simple Synthesis of Spent Coffee Ground-Based Microporous Carbons Using K2CO3 as an Activation Agent and Their Application to CO2 Capture. Chem. Eng. J. 2020, 397, 125404. [Google Scholar] [CrossRef]
- Meshram, S.; Katiyar, D.; Asha, T.; Dewangan, G.P.; Joshi, A.N.; Thakur, R.S. Preparation and Characterization of Activated Carbon from Spent Coffee Grounds Using NaOH and KCl as Activating Agents. J. Indian Chem. Soc. 2020, 97, 1115–1118. [Google Scholar]
- Rosson, E.; Sgarbossa, P.; Mozzon, M.; Venturino, F.; Bogialli, S.; Glisenti, A.; Talon, A.; Moretti, E.; Carturan, S.M.; Tamburini, S.; et al. Novel Correlations between Spectroscopic and Morphological Properties of Activated Carbons from Waste Coffee Grounds. Processes 2021, 9, 1637. [Google Scholar] [CrossRef]
- Bandosz, T.J.; Ba, K.K. Spent Coffee-Based Activated Carbons: Production, Properties, and Environmental Applications. In Coffee in Health and Disease Prevention; Elsevier: Amsterdam, The Netherlands, 2015; pp. 311–317. ISBN 9780124167162. [Google Scholar]
- Kikuchi, K.; Yamashita, R.; Sakuragawa, S.; Saeki, T.; Oikawa, K.; Kume, T. Pore Structure and Chemical Composition of Activated Carbon Derived from Composted Spent Coffee Grounds. Tanso 2017, 2017, 118–122. [Google Scholar] [CrossRef]
- Tehrani, N.F.; Aznar, J.S.; Kiros, Y. Coffee Extract Residue for Production of Ethanol and Activated Carbons. J. Clean. Prod. 2015, 91, 64–70. [Google Scholar] [CrossRef]
- Plaza, M.G.; González, A.S.; Pevida, C.; Pis, J.J.; Rubiera, F. Valorisation of Spent Coffee Grounds as CO2 Adsorbents for Postcombustion Capture Applications. Appl. Energy 2012, 99, 272–279. [Google Scholar] [CrossRef]
- Zhang, Y.; Cui, Y.; Chen, P.; Liu, S.; Zhou, N.; Ding, K.; Fan, L.; Peng, P.; Min, M.; Cheng, Y.; et al. Gasification Technologies and Their Energy Potentials; Elsevier: Amsterdam, The Netherlands, 2019; ISBN 9780444642004. [Google Scholar]
- Mishra, S.; Upadhyay, R.K. Review on Biomass Gasification: Gasifiers, Gasifying Mediums, and Operational Parameters. Mater. Sci. Energy Technol. 2021, 4, 329–340. [Google Scholar] [CrossRef]
- Safarian, S.; Unnþórsson, R.; Richter, C. A Review of Biomass Gasification Modelling. Renew. Sustain. Energy Rev. 2019, 110, 378–391. [Google Scholar] [CrossRef]
- Kordi, M.; Masoud Seyyedi, S. Biomass Gasification Systems and Different Types of Gasifiers, Effective Parameters on Gasification Process Efficiency: An Overview. J. Appl. Dyn. Syst. Control 2021, 4, 1–17. [Google Scholar]
- Janajreh, I.; Adeyemi, I.; Raza, S.S.; Ghenai, C. A Review of Recent Developments and Future Prospects in Gasification Systems and Their Modeling. Renew. Sustain. Energy Rev. 2021, 138, 110505. [Google Scholar] [CrossRef]
- Thomson, R.; Kwong, P.; Ahmad, E.; Nigam, K.D.P. Clean Syngas from Small Commercial Biomass Gasifiers; a Review of Gasifier Development, Recent Advances and Performance Evaluation. Int. J. Hydrogen Energy 2020, 45, 21087–21111. [Google Scholar] [CrossRef]
- Rodrigues, J.P.; Ghesti, G.F.; Silveira, E.A.; Lamas, G.C.; Ferreira, R.; Costa, M. Waste-to-Hydrogen via CO2/Steam-Enhanced Gasification of Spent Coffee Ground. Clean. Chem. Eng. 2022, 4, 100082. [Google Scholar] [CrossRef]
- Lachos-Perez, D.; César Torres-Mayanga, P.; Abaide, E.R.; Zabot, G.L.; De Castilhos, F. Hydrothermal Carbonization and Liquefaction: Differences, Progress, Challenges, and Opportunities. Bioresour. Technol. 2022, 343, 126084. [Google Scholar] [CrossRef]
- Kumar, M.; Olajire Oyedun, A.; Kumar, A. A Review on the Current Status of Various Hydrothermal Technologies on Biomass Feedstock. Renew. Sustain. Energy Rev. 2018, 81, 1742–1770. [Google Scholar] [CrossRef]
- Kruse, A.; Dahmen, N. Hydrothermal Biomass Conversion: Quo Vadis? J. Supercrit. Fluids 2018, 134, 114–123. [Google Scholar] [CrossRef]
- Sharma, R.; Jasrotia, K.; Singh, N.; Ghosh, P.; Srivastava, S.; Sharma, N.R.; Singh, J.; Kanwar, R.; Kumar, A. A Comprehensive Review on Hydrothermal Carbonization of Biomass and Its Applications. Chem. Africa 2020, 3, 1–19. [Google Scholar] [CrossRef]
- Maniscalco, M.P.; Volpe, M.; Messineo, A. Hydrothermal Carbonization as a Valuable Tool for Energy and Environmental Applications: A Review. Energies 2020, 13, 4098. [Google Scholar] [CrossRef]
- Massaya, J.; Pickens, G.; Mills-Lamptey, B.; Chuck, C.J. Enhanced Hydrothermal Carbonization of Spent Coffee Grounds for the Efficient Production of Solid Fuel with Lower Nitrogen Content. Energy Fuels 2021, 35, 9462–9473. [Google Scholar] [CrossRef]
- Basar, I.A.; Liu, H.; Carrere, H.; Trably, E.; Eskicioglu, C. A Review on Key Design and Operational Parameters to Optimize and Develop Hydrothermal Liquefaction of Biomass for Biorefinery Applications. Green Chem. 2021, 23, 1404–1446. [Google Scholar] [CrossRef]
- Stylianou, M.; Christou, A.; Dalias, P.; Polycarpou, P.; Michael, C.; Agapiou, A.; Papanastasiou, P.; Fatta-Kassinos, D. Physicochemical and Structural Characterization of Biochar Derived from the Pyrolysis of Biosolids, Cattle Manure and Spent Coffee Grounds. J. Energy Inst. 2020, 93, 2063–2073. [Google Scholar] [CrossRef]
- Oliveira, G.A.; Gevaerd, A.; Mangrich, A.S.; Marcolino-Junior, L.H.; Bergamini, M.F. Biochar Obtained from Spent Coffee Grounds: Evaluation of Adsorption Properties and Its Application in a Voltammetric Sensor for Lead (II) Ions. Microchem. J. 2021, 165, 106114. [Google Scholar] [CrossRef]
- Andrade, T.S.; Vakros, J.; Mantzavinos, D.; Lianos, P. Biochar Obtained by Carbonization of Spent Coffee Grounds and Its Application in the Construction of an Energy Storage Device. Chem. Eng. J. Adv. 2020, 4, 100061. [Google Scholar] [CrossRef]
- Guimarães, T.; De Oliveira, A.F.; Lopes, R.P.; De Carvalho Teixeira, A.P. Biochars Obtained from Arabica Coffee Husks by a Pyrolysis Process: Characterization and Application in Fe(Ii) Removal in Aqueous Systems. New J. Chem. 2020, 44, 3310–3322. [Google Scholar] [CrossRef]
- Kiggundu, N.; Sittamukyoto, J. Pryloysis of Coffee Husks for Biochar Production. J. Environ. Prot. 2019, 10, 1553–1564. [Google Scholar] [CrossRef]
- Vardon, D.R.; Moser, B.R.; Zheng, W.; Witkin, K.; Evangelista, R.L.; Strathmann, T.J.; Rajagopalan, K.; Sharma, B.K. Complete Utilization of Spent Coffee Grounds to Produce Biodiesel, Bio-Oil, and Biochar. ACS Sustain. Chem. Eng. 2013, 1, 1286–1294. [Google Scholar] [CrossRef]
- Islam, M.A.; Parvin, M.I.; Dada, T.K.; Kumar, R.; Antunes, E. Silver Adsorption on Biochar Produced from Spent Coffee Grounds: Validation by Kinetic and Isothermal Modelling. Biomass Convers. Biorefinery 2024, 14, 28007–28021. [Google Scholar] [CrossRef]
- Lee, J.C.; Kim, H.J.; Kim, H.W.; Lim, H. Iron-Impregnated Spent Coffee Ground Biochar for Enhanced Degradation of Methylene Blue during Cold Plasma Application. J. Ind. Eng. Chem. 2021, 98, 383–388. [Google Scholar] [CrossRef]
- de Souza, L.Z.M.; Pinto, B.C.; Alves, A.B.; de Oliveira Ribeiro, A.V.; Teodoro Feliciano, D.C.; da Silva, L.H.; Moraes Dias, T.T.; Yılmaz, M.; de Oliveira, M.A.; da Silva Bezerra, A.C.; et al. Ecotoxicological Effects of Biochar Obtained from Spent Coffee Grounds. Mater. Res. 2022, 25, e20220013. [Google Scholar] [CrossRef]
- Codignole Luz, F.; Cordiner, S.; Manni, A.; Mulone, V.; Rocco, V. Biomass Fast Pyrolysis in Screw Reactors: Prediction of Spent Coffee Grounds Bio-Oil Production through a Monodimensional Model. Energy Convers. Manag. 2018, 168, 98–106. [Google Scholar] [CrossRef]
- Shin, H.; Tiwari, D.; Kim, D.J. Phosphate Adsorption/Desorption Kinetics and P Bioavailability of Mg-Biochar from Ground Coffee Waste. J. Water Process Eng. 2020, 37, 101484. [Google Scholar] [CrossRef]
- Nguyen, V.T.; Nguyen, T.B.; Chen, C.W.; Hung, C.M.; Vo, T.D.H.; Chang, J.H.; Dong, C. Di Influence of Pyrolysis Temperature on Polycyclic Aromatic Hydrocarbons Production and Tetracycline Adsorption Behavior of Biochar Derived from Spent Coffee Ground. Bioresour. Technol. 2019, 284, 197–203. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.H.; Wen, W.C.; Hsu, H.C.; Yao, B.Y. High-Capacitance KOH-Activated Nitrogen-Containing Porous Carbon Material from Waste Coffee Grounds in Supercapacitor. Adv. Powder Technol. 2016, 27, 1387–1395. [Google Scholar] [CrossRef]
- Zhao, Z.; Wu, W.; Li, W.; Li, B.; Shui, Z.; Wang, X.; Jiang, G.; Li, G.; Cheng, J.; Zhang, Z.; et al. Adsorption Recovery of Chlorinated Volatile Organic Compounds on Coffee Ground-Based Activated Carbon of Tunable Porosity. Sep. Purif. Technol. 2025, 354, 129271. [Google Scholar] [CrossRef]
- Ren, J.; Chen, N.; Wan, L.; Li, G.; Chen, T.; Yang, F.; Sun, S. Preparation of High-Performance Activated Carbon from Coffee Grounds after Extraction of Bio-Oil. Molecules 2021, 26, 257. [Google Scholar] [CrossRef]
- Alcaraz, L.; Saquinga, D.N.; Alguacil, F.J.; Escudero, E.; López, F.A. Application of Activated Carbon Obtained from Spent Coffee Ground Wastes to Effective Terbium Recovery from Liquid Solutions. Metals 2021, 11, 630. [Google Scholar] [CrossRef]
- Sklepova, S.V.S.; Gasyuk, I.M.; Ivanichok, N.Y.; Kolkovskyi, P.I.; Kotsyubynsky, V.O.; Rachiy, B.I. The Porous Structure of Activated Carbon-Based on Waste Coffee Grounds. Phys. Chem. Solid State 2022, 23, 484–490. [Google Scholar] [CrossRef]
- Kamińska, A.; Miądlicki, P.; Kiełbasa, K.; Kujbida, M.; Sreńscek-Nazzal, J.; Wróbel, R.J.; Wróblewska, A. Activated Carbons Obtained from Orange Peels, Coffee Grounds, and Sunflower Husks—Comparison of Physicochemical Properties and Activity in the Alpha-Pinene Isomerization Process. Materials 2021, 14, 7448. [Google Scholar] [CrossRef]
- Loulidi, I.; Jabri, M.; Amar, A.; Kali, A.; Alrashdi, A.A.; Hadey, C.; Ouchabi, M.; Abdullah, P.S.; Lgaz, H.; Cho, Y.; et al. Comparative Study on Adsorption of Crystal Violet and Chromium (VI) by Activated Carbon Derived from Spent Coffee Grounds. Appl. Sci. 2023, 13, 985. [Google Scholar] [CrossRef]
- Asimakopoulos, G.; Baikousi, M.; Kostas, V.; Papantoniou, M.; Bourlinos, A.B.; Zbořil, R.; Karakassides, M.A.; Salmas, C.E. Nanoporous Activated Carbon Derived via Pyrolysis Process of Spent Coffee: Structural Characterization. Investigation of Its Use for Hexavalent Chromium Removal. Appl. Sci. 2020, 10, 8812. [Google Scholar] [CrossRef]
- Sangprasert, T.; Sattayarut, V.; Rajrujithong, C.; Khanchaitit, P.; Khemthong, P.; Chanthad, C.; Grisdanurak, N. Making Use of the Inherent Nitrogen Content of Spent Coffee Grounds to Create Nanostructured Activated Carbon for Supercapacitor and Lithium-Ion Battery Applications. Diam. Relat. Mater. 2022, 127, 109164. [Google Scholar] [CrossRef]
- Jin, Y.; Tang, W.; Wang, J.; Chen, Z.; Ren, F.; Sun, Z.; Wang, F.; Ren, P.G. High Photocatalytic Activity of Spent Coffee Grounds Derived Activated Carbon-Supported Ag/TiO2 Catalyst for Degradation of Organic Dyes and Antibiotics. Colloids Surf. A Physicochem. Eng. Asp. 2022, 655, 130316. [Google Scholar] [CrossRef]
- Zhang, X.; Yang, Y.; Hao Ngo, H.; Guo, W.; Sun, F.; Wang, X.; Zhang, J.; Long, T. Urea Removal in Reclaimed Water Used for Ultrapure Water Production by Spent Coffee Biochar/Granular Activated Carbon Activating Peroxymonosulfate and Peroxydisulfate. Bioresour. Technol. 2022, 343, 126062. [Google Scholar] [CrossRef] [PubMed]
- Hsieh, T.H.; Wang, H.L.; Yu, G.T.; Huang, G.M.; Lin, J.H. Meso-Pore Dominant Activated Carbon from Spent Coffee Grounds for High-Performance Electrochemical Capacitors in Organic Electrolyte. J. Environ. Chem. Eng. 2021, 9, 106418. [Google Scholar] [CrossRef]
- Mukherjee, A.; Saha, B.; Niu, C.; Dalai, A.K. Preparation of Activated Carbon from Spent Coffee Grounds and Functionalization by Deep Eutectic Solvent: Effect of Textural Properties and Surface Chemistry on CO2 capture Performance. J. Environ. Chem. Eng. 2022, 10, 108815. [Google Scholar] [CrossRef]
- Hernández Rodiguez, M.; Yperman, J.; Carleer, R.; Maggen, J.; Daddi, D.; Gryglewicz, G.; Van der Bruggen, B.; Falcón Hernández, J.; Otero Calvis, A. Adsorption of Ni(II) on Spent Coffee and Coffee Husk Based Activated Carbon. J. Environ. Chem. Eng. 2018, 6, 1161–1170. [Google Scholar] [CrossRef]
- Hung, Y.H.; Liu, T.Y.; Chen, H.Y. Renewable Coffee Waste-Derived Porous Carbons as Anode Materials for High-Performance Sustainable Microbial Fuel Cells. ACS Sustain. Chem. Eng. 2019, 7, 16991–16999. [Google Scholar] [CrossRef]
- Alves, A.C.F.; Antero, R.V.P.; de Oliveira, S.B.; Ojala, S.A.; Scalize, P.S. Activated Carbon Produced from Waste Coffee Grounds for an Effective Removal of Bisphenol-A in Aqueous Medium. Environ. Sci. Pollut. Res. 2019, 26, 24850–24862. [Google Scholar] [CrossRef]
- Bader, N.; Zacharia, R.; Abdelmottaleb, O.; Cossement, D. How the Activation Process Modifies the Hydrogen Storage Behavior of Biomass-Derived Activated Carbons. J. Porous Mater. 2018, 25, 221–234. [Google Scholar] [CrossRef]
- Jiang, C.; Yakaboylu, G.A.; Yumak, T.; Zondlo, J.W.; Sabolsky, E.M.; Wang, J. Activated Carbons Prepared by Indirect and Direct CO2 Activation of Lignocellulosic Biomass for Supercapacitor Electrodes. Renew. Energy 2020, 155, 38–52. [Google Scholar] [CrossRef]
- Lim, H.K.; Md Ali, U.F.; Ahmad, R.; Aroua, M.K. Adsorption of Carbon Dioxide (CO2) by Activated Carbon Derived from Waste Coffee Grounds. IOP Conf. Ser. Earth Environ. Sci. 2021, 765, 012034. [Google Scholar] [CrossRef]
- Pagalan, E.; Sebron, M.; Gomez, S.; Salva, S.J.; Ampusta, R.; Macarayo, A.J.; Joyno, C.; Ido, A.; Arazo, R. Activated Carbon from Spent Coffee Grounds as an Adsorbent for Treatment of Water Contaminated by Aniline Yellow Dye. Ind. Crops Prod. 2020, 145, 111953. [Google Scholar] [CrossRef]
- Torres-Caban, R.; Vega-Olivencia, C.A.; Mina-Camilde, N. Adsorption of Ni2+ and Cd2+ from Water by Calcium Alginate/Spent Coffee Grounds Composite Beads. Appl. Sci. 2019, 9, 4531. [Google Scholar] [CrossRef]
- Choi, J.; Zequine, C.; Bhoyate, S.; Lin, W.; Li, X.; Kahol, P.; Gupta, R. Waste Coffee Management: Deriving High-Performance Supercapacitors Using Nitrogen-Doped Coffee-Derived Carbon. C 2019, 5, 44. [Google Scholar] [CrossRef]
- Yun, Y.S.; Park, M.H.; Hong, S.J.; Lee, M.E.; Park, Y.W.; Jin, H.J. Hierarchically Porous Carbon Nanosheets from Waste Coffee Grounds for Supercapacitors. ACS Appl. Mater. Interfaces 2015, 7, 3684–3690. [Google Scholar] [CrossRef]
- Liu, X.; Mohanty, R.P.; Maier, E.Y.; Peng, X.; Wulfe, S.; Looney, A.P.; Aung, K.L.; Ghosh, D. Controlled Loading of Albumin-Drug Conjugates Ex Vivo for Enhanced Drug Delivery and Antitumor Efficacy. J. Control. Release 2020, 328, 1–12. [Google Scholar] [CrossRef]
- Wei, L.; Yushin, G. Nanostructured Activated Carbons from Natural Precursors for Electrical Double Layer Capacitors. Nano Energy 2012, 1, 552–565. [Google Scholar] [CrossRef]
- Kierzek, K.; Gryglewicz, G. Activated Carbons and Their Evaluation in Electric Double Layer Capacitors. Molecules 2020, 25, 4255. [Google Scholar] [CrossRef]
- Krikstolaityte, V.; Joshua, O.E.Y.; Veksha, A.; Wai, N.; Lisak, G.; Lim, T.M. Conversion of Spent Coffee Beans to Electrode Material for Vanadium Redox Flow Batteries. Batteries 2018, 4, 56. [Google Scholar] [CrossRef]
- Li, M.; Cheng, W.Y.; Li, Y.C.; Wu, H.M.; Wu, Y.C.; Lu, H.W.; Cheng, S.L.; Li, L.; Chang, K.C.; Liu, H.J.; et al. Deformable, Resilient, and Mechanically-Durable Triboelectric Nanogenerator Based on Recycled Coffee Waste for Wearable Power and Self-Powered Smart Sensors. Nano Energy 2021, 79, 105405. [Google Scholar] [CrossRef]
- Gissawong, N.; Srijaranai, S.; Boonchiangma, S.; Uppachai, P.; Seehamart, K.; Jantrasee, S.; Moore, E.; Mukdasai, S. An Electrochemical Sensor for Voltammetric Detection of Ciprofloxacin Using a Glassy Carbon Electrode Modified with Activated Carbon, Gold Nanoparticles and Supramolecular Solvent. Microchim. Acta 2021, 188, 208. [Google Scholar] [CrossRef]
- Bose, D.; Sridharan, S.; Dhawan, H.; Vijay, P.; Gopinath, M. Biomass Derived Activated Carbon Cathode Performance for Sustainable Power Generation from Microbial Fuel Cells. Fuel 2019, 236, 325–337. [Google Scholar] [CrossRef]
- Cruz, S.; Marques dos Santos Cordovil, C.S.C. Espresso Coffee Residues as a Nitrogen Amendment for Small-Scale Vegetable Production. J. Sci. Food Agric. 2015, 95, 3059–3066. [Google Scholar] [CrossRef] [PubMed]
- Bomfim, A.S.C.d.; de Oliveira, D.M.; Walling, E.; Babin, A.; Hersant, G.; Vaneeckhaute, C.; Dumont, M.-J.; Rodrigue, D. Spent Coffee Grounds Characterization and Reuse in Composting and Soil Amendment. Waste 2022, 1, 2–20. [Google Scholar] [CrossRef]
- Arulrajah, A.; Kua, T.A.; Horpibulsuk, S.; Mirzababaei, M.; Chinkulkijniwat, A. Recycled Glass as a Supplementary Filler Material in Spent Coffee Grounds Geopolymers. Constr. Build. Mater. 2017, 151, 18–27. [Google Scholar] [CrossRef]
- Kua, T.A.; Arulrajah, A.; Horpibulsuk, S.; Du, Y.J.; Shen, S.L. Strength Assessment of Spent Coffee Grounds-Geopolymer Cement Utilizing Slag and Fly Ash Precursors. Constr. Build. Mater. 2016, 115, 565–575. [Google Scholar] [CrossRef]
- Arulrajah, A.; Kua, T.A.; Suksiripattanapong, C.; Horpibulsuk, S.; Shen, J.S. Compressive Strength and Microstructural Properties of Spent Coffee Grounds-Bagasse Ash Based Geopolymers with Slag Supplements. J. Clean. Prod. 2017, 162, 1491–1501. [Google Scholar] [CrossRef]
- Arulrajah, A.; Maghoolpilehrood, F.; Disfani, M.M.; Horpibulsuk, S. Spent Coffee Grounds as a Non-Structural Embankment Fill Material: Engineering and Environmental Considerations. J. Clean. Prod. 2014, 72, 181–186. [Google Scholar] [CrossRef]
- Kua, T.A.; Arulrajah, A.; Horpibulsuk, S.; Du, Y.J.; Suksiripattanapong, C. Engineering and Environmental Evaluation of Spent Coffee Grounds Stabilized with Industrial By-Products as a Road Subgrade Material. Clean Technol. Environ. Policy 2017, 19, 63–75. [Google Scholar] [CrossRef]
- Kua, T.A.; Arulrajah, A.; Mohammadinia, A.; Horpibulsuk, S.; Mirzababaei, M. Stiffness and Deformation Properties of Spent Coffee Grounds Based Geopolymers. Constr. Build. Mater. 2017, 138, 79–87. [Google Scholar] [CrossRef]
- Suksiripattanapong, C.; Kua, T.A.; Arulrajah, A.; Maghool, F.; Horpibulsuk, S. Strength and Microstructure Properties of Spent Coffee Grounds Stabilized with Rice Husk Ash and Slag Geopolymers. Constr. Build. Mater. 2017, 146, 312–320. [Google Scholar] [CrossRef]
- Wu, H.; Hu, W.; Zhang, Y.; Huang, L.; Zhang, J.; Tan, S.; Cai, X.; Liao, X. Effect of Oil Extraction on Properties of Spent Coffee Ground–Plastic Composites. J. Mater. Sci. 2016, 51, 10205–10214. [Google Scholar] [CrossRef]
- Zarrinbakhsh, N.; Wang, T.; Rodriguez-Uribe, A.; Misra, M.; Mohanty, A.K. Characterization of Wastes and Coproducts from the Coffee Industry for Composite Material Production. BioResources 2016, 11, 7637–7653. [Google Scholar] [CrossRef]
- García-García, D.; Carbonell, A.; Samper, M.D.; García-Sanoguera, D.; Balart, R. Green Composites Based on Polypropylene Matrix and Hydrophobized Spend Coffee Ground (SCG) Powder. Compos. Part B Eng. 2015, 78, 256–265. [Google Scholar] [CrossRef]
- Wu, C.S. Renewable Resource-Based Green Composites of Surface-Treated Spent Coffee Grounds and Polylactide: Characterisation and Biodegradability. Polym. Degrad. Stab. 2015, 121, 51–59. [Google Scholar] [CrossRef]
- Panzella, L.; Cerruti, P.; Ambrogi, V.; Agustin-Salazar, S.; D’Errico, G.; Carfagna, C.; Goya, L.; Ramos, S.; Martín, M.A.; Napolitano, A.; et al. A Superior All-Natural Antioxidant Biomaterial from Spent Coffee Grounds for Polymer Stabilization, Cell Protection, and Food Lipid Preservation. ACS Sustain. Chem. Eng. 2016, 4, 1169–1179. [Google Scholar] [CrossRef]
- Lee, H.K.; Park, Y.G.; Jeong, T.; Song, Y.S. Green Nanocomposites Filled with Spent Coffee Grounds. J. Appl. Polym. Sci. 2015, 132, 42043. [Google Scholar] [CrossRef]
- Obruca, S.; Benesova, P.; Kucera, D.; Petrik, S.; Marova, I. Biotechnological Conversion of Spent Coffee Grounds into Polyhydroxyalkanoates and Carotenoids. N. Biotechnol. 2015, 32, 569–574. [Google Scholar] [CrossRef]
- Obruca, S.; Benesova, P.; Petrik, S.; Oborna, J.; Prikryl, R.; Marova, I. Production of Polyhydroxyalkanoates Using Hydrolysate of Spent Coffee Grounds. Process Biochem. 2014, 49, 1409–1414. [Google Scholar] [CrossRef]
- Cruz, M.V.; Paiva, A.; Lisboa, P.; Freitas, F.; Alves, V.D.; Simões, P.; Barreiros, S.; Reis, M.A.M. Production of Polyhydroxyalkanoates from Spent Coffee Grounds Oil Obtained by Supercritical Fluid Extraction Technology. Bioresour. Technol. 2014, 157, 360–363. [Google Scholar] [CrossRef]
- Wu, C.S. Modulation of the Interface between Polyester and Spent Coffee Grounds in Polysaccharide Membranes: Preparation, Cell Proliferation, Antioxidant Activity and Tyrosinase Activity. Mater. Sci. Eng. C 2017, 78, 530–538. [Google Scholar] [CrossRef] [PubMed]
- McNutt, J.; He, Q. (Sophia) Spent Coffee Grounds: A Review on Current Utilization. J. Ind. Eng. Chem. 2019, 71, 78–88. [Google Scholar] [CrossRef]
- Yen, H.Y.; Lin, C.P. Adsorption of Cd(II) from Wastewater Using Spent Coffee Grounds by Taguchi Optimization. Desalin. Water Treat. 2016, 57, 11154–11161. [Google Scholar] [CrossRef]
- Davila-Guzman, N.E.; Cerino-Córdova, F.J.; Loredo-Cancino, M.; Rangel-Mendez, J.R.; Gómez-González, R.; Soto-Regalado, E. Studies of Adsorption of Heavy Metals onto Spent Coffee Ground: Equilibrium, Regeneration, and Dynamic Performance in a Fixed-Bed Column. Int. J. Chem. Eng. 2016, 2016, 9413879. [Google Scholar] [CrossRef]
- Kim, M.S.; Min, H.G.; Koo, N.; Park, J.; Lee, S.H.; Bak, G.I.; Kim, J.G. The Effectiveness of Spent Coffee Grounds and Its Biochar on the Amelioration of Heavy Metals-Contaminated Water and Soil Using Chemical and Biological Assessments. J. Environ. Manage. 2014, 146, 124–130. [Google Scholar] [CrossRef]
- Chavan, H.V.; Bandgar, B.P. Aqueous Extract of Acacia Concinna Pods: An Efficient Surfactant Type Catalyst for Synthesis of 3-Carboxycoumarins and Cinnamic Acids via Knoevenagel Condensation. ACS Sustain. Chem. Eng. 2013, 1, 929–936. [Google Scholar] [CrossRef]
- Da Silva Correia, I.K.; Santos, P.F.; Santana, C.S.; Neris, J.B.; Luzardo, F.H.M.; Velasco, F.G. Application of Coconut Shell, Banana Peel, Spent Coffee Grounds, Eucalyptus Bark, Piassava (Attalea funifera) and Water Hyacinth (Eichornia crassipes) in the Adsorption of Pb2+ and Ni2+ Ions in Water. J. Environ. Chem. Eng. 2018, 6, 2319–2334. [Google Scholar] [CrossRef]
- Kim, M.S.; Kim, J.G. Adsorption Characteristics of Spent Coffee Grounds as an Alternative Adsorbent for Cadmium in Solution. Environments 2020, 7, 24. [Google Scholar] [CrossRef]
- Azouaou, N.; Sadaoui, Z.; Djaafri, A.; Mokaddem, H. Adsorption of Cadmium from Aqueous Solution onto Untreated Coffee Grounds: Equilibrium, Kinetics and Thermodynamics. J. Hazard. Mater. 2010, 184, 126–134. [Google Scholar] [CrossRef] [PubMed]
- Nam, G.; Kim, M.S.; Lee, N.; Choi, Y.H.; Ahn, J.W. An Environmentally Benign Approach for as (V) Absorption from Wastewater Using Untreated Coffee Grounds-Preliminary Results. Water 2017, 9, 867. [Google Scholar] [CrossRef]
- Zungu, V.; Hadebe, L.; Mpungose, P.; Hamza, I.; Amaku, J.; Gumbi, B. Fabrication of Biochar Materials from Biowaste Coffee Grounds and Assessment of Its Adsorbent Efficiency for Remediation of Water-Soluble Pharmaceuticals. Sustainability 2022, 14, 2931. [Google Scholar] [CrossRef]
- Fang, J.; Zhan, L.; Ok, Y.S.; Gao, B. Minireview of Potential Applications of Hydrochar Derived from Hydrothermal Carbonization of Biomass. J. Ind. Eng. Chem. 2018, 57, 15–21. [Google Scholar] [CrossRef]
- Khataee, A.; Kayan, B.; Kalderis, D.; Karimi, A.; Akay, S.; Konsolakis, M. Ultrasound-Assisted Removal of Acid Red 17 Using Nanosized Fe3O4-Loaded Coffee Waste Hydrochar. Ultrason. Sonochem. 2017, 35, 72–80. [Google Scholar] [CrossRef] [PubMed]
- Xu, H.; Xie, L.; Hakkarainen, M. Coffee-Ground-Derived Quantum Dots for Aqueous Processable Nanoporous Graphene Membranes. ACS Sustain. Chem. Eng. 2017, 5, 5360–5367. [Google Scholar] [CrossRef]
- Xu, H.; Xie, L.; Li, J.; Hakkarainen, M. Coffee Grounds to Multifunctional Quantum Dots: Extreme Nanoenhancers of Polymer Biocomposites. ACS Appl. Mater. Interfaces 2017, 9, 27972–27983. [Google Scholar] [CrossRef] [PubMed]
- Shi, C.; Zhang, X.; Nilghaz, A.; Wu, Z.; Wang, T.; Zhu, B.; Tang, G.; Su, B.; Tian, J. Large-Scale Production of Spent Coffee Ground-Based Photothermal Materials for High-Efficiency Solar-Driven Interfacial Evaporation. Chem. Eng. J. 2023, 455, 140361. [Google Scholar] [CrossRef]
- Qureshi, K.M.; Kay Lup, A.N.; Khan, S.; Abnisa, F.; Wan Daud, W.M.A. A Technical Review on Semi-Continuous and Continuous Pyrolysis Process of Biomass to Bio-Oil. J. Anal. Appl. Pyrolysis 2018, 131, 52–75. [Google Scholar] [CrossRef]
- Elmously, M.; Jäger, N.; Apfelbacher, A.; Daschner, R.; Hornung, A. Thermo-Catalytic Reforming of Spent Coffee Grounds. Bioresour. Bioprocess. 2019, 6, 44. [Google Scholar] [CrossRef]
- Hu, X.; Gholizadeh, M. Progress of the Applications of Bio-Oil. Renew. Sustain. Energy Rev. 2020, 134, 110124. [Google Scholar] [CrossRef]
- Kim, J.H.; Ahn, D.U.; Eun, J.B.; Moon, S.H. Antioxidant Effect of Extracts from the Coffee Residue in Raw and Cooked Meat. Antioxidants 2016, 5, 21. [Google Scholar] [CrossRef]
- Sampaio, A.; Dragone, G.; Vilanova, M.; Oliveira, J.M.; Teixeira, J.A.; Mussatto, S.I. Production, Chemical Characterization, and Sensory Profile of a Novel Spirit Elaborated from Spent Coffee Ground. Lwt 2013, 54, 557–563. [Google Scholar] [CrossRef]
- Machado, E.; Mussatto, S.I.; Teixeira, J.; Vilanova, M.; Oliveira, J. Increasing the Sustainability of the Coffee Agro-Industry: Spent Coffee Grounds as a Source of New Beverages. Beverages 2018, 4, 105. [Google Scholar] [CrossRef]
- Liu, Y.; Lu, Y.; Liu, S.Q. The Potential of Spent Coffee Grounds Hydrolysates Fermented with Torulaspora Delbrueckii and Pichia Kluyveri for Developing an Alcoholic Beverage: The Yeasts Growth and Chemical Compounds Modulation by Yeast Extracts. Curr. Res. Food Sci. 2021, 4, 489–498. [Google Scholar] [CrossRef] [PubMed]
- Masino, F.; Montevecchi, G.; Calvini, R.; Foca, G.; Antonelli, A. Sensory Evaluation and Mixture Design Assessment of Coffee-Flavored Liquor Obtained from Spent Coffee Grounds. Food Qual. Prefer. 2022, 96, 104427. [Google Scholar] [CrossRef]
- Tehrani, M.; Ghaheh, F.S.; Beni, Z.T.; Rahimi, M. Extracted Dyes’ Stability as Obtained from Spent Coffee Grounds on Silk Fabrics Using Eco-Friendly Mordants. Environ. Sci. Pollut. Res. 2023, 30, 68625–68635. [Google Scholar] [CrossRef]
- Nayak, A.; Bhushan, B. Valorization of Coffee Wastes for Effective Recovery of Value-Added Bio-Based Products: An Aim to Enhance the Sustainability and Productivity of the Coffee Industry. In Valorization of Agri-Food Wastes and By-Products: Recent Trends, Innovations and Sustainability Challenges; Elsevier: Amsterdam, The Netherlands, 2021; pp. 199–218. ISBN 9780128240441. [Google Scholar]
- Sayoud, S.; Derbal, K.; Panico, A.; Pontoni, L.; Fabbricino, M.; Pirozzi, F.; Benalia, A. The Effect of Hydrogen Peroxide on Biogas and Methane Produced from Batch Mesophilic Anaerobic Digestion of Spent Coffee Grounds. Fermentation 2025, 11, 60. [Google Scholar] [CrossRef]
- Gu, J.; Lee, A.; Choe, C.; Lim, H. Comparative Study of Biofuel Production Based on Spent Coffee Grounds Transesterification and Pyrolysis: Process Simulation, Techno-Economic, and Life Cycle Assessment. J. Clean. Prod. 2023, 428, 139308. [Google Scholar] [CrossRef]
- Kisiga, W.; Chetty, M.; Rathilal, S. Environmental Impact Assessment of Alternative Technologies for Production of Biofuels from Spent Coffee Grounds. Energy Sci. Eng. 2024, 12, 4823–4842. [Google Scholar] [CrossRef]
- Schmidt Rivera, X.C.; Gallego-Schmid, A.; Najdanovic-Visak, V.; Azapagic, A. Life Cycle Environmental Sustainability of Valorisation Routes for Spent Coffee Grounds: From Waste to Resources. Resour. Conserv. Recycl. 2020, 157, 104751. [Google Scholar] [CrossRef]
- Forcina, A.; Petrillo, A.; Travaglioni, M.; di Chiara, S.; De Felice, F. A Comparative Life Cycle Assessment of Different Spent Coffee Ground Reuse Strategies and a Sensitivity Analysis for Verifying the Environmental Convenience Based on the Location of Sites. J. Clean. Prod. 2023, 385, 135727. [Google Scholar] [CrossRef]
- Yang, J.; Chen, H.; Niu, H.; McNutt, J.; He, Q. A Comparative Study on Thermochemical Valorization Routes for Spent Coffee Grounds. Energies 2021, 14, 3840. [Google Scholar] [CrossRef]
- Pradhan, S.; Mohammed Al-Awadhi, Y.; Alherbawi, M.; Mackey, R.; Al-Ansari, T.A.; McKay, G. Economic and Environmental Life Cycle Assessment of Spent Coffee Grounds 2 Valorization for Bioenergy Production. 2024. Available online: https://papers.ssrn.com/sol3/papers.cfm?abstract_id=5037513 (accessed on 25 July 2025).
- Thoppil, Y.; Zein, S.H. Techno-Economic Analysis and Feasibility of Industrial-Scale Biodiesel Production from Spent Coffee Grounds. J. Clean. Prod. 2021, 307, 127113. [Google Scholar] [CrossRef]
- Valencia Isaza, A.; Romero-Gámez, M.; Serrano-Bernarndo, F.; Fernández-Arteaga, A. Valorization of Spent Coffee Grounds: Techno-Economic and Environmental Assessment of a Multi-Product Biorefinery. 2025. Available online: https://papers.ssrn.com/sol3/papers.cfm?abstract_id=5314653 (accessed on 25 July 2025).
- Mukherjee, A.; Okolie, J.A.; Niu, C.; Dalai, A.K. Techno—Economic Analysis of Activated Carbon Production from Spent Coffee Grounds: Comparative Evaluation of Different Production Routes. Energy Convers. Manag. X 2022, 14, 100218. [Google Scholar] [CrossRef]
- Yeoh, L.; Ng, K.S. Future Prospects of Spent Coffee Ground Valorisation Using a Biorefinery Approach. Resour. Conserv. Recycl. 2022, 179, 106123. [Google Scholar] [CrossRef]
- Saeli, M.; Batra, V.S.; Singh, R.K.; Tobaldi, D.M.; Labrincha, J.A. The Coffee-House: Upcycling Spent Coffee Grounds for the Production of Green Geopolymeric Architectural Energy-Saving Products. Energy Build. 2023, 286, 112956. [Google Scholar] [CrossRef]
- Rajesh Banu, J.; Kavitha, S.; Yukesh Kannah, R.; Dinesh Kumar, M.; Preethi; Atabani, A.E.; Kumar, G. Biorefinery of Spent Coffee Grounds Waste: Viable Pathway towards Circular Bioeconomy. Bioresour. Technol. 2020, 302, 122821. [Google Scholar] [CrossRef]
- Zabaniotou, A.; Kamaterou, P. Food Waste Valorization Advocating Circular Bioeconomy—A Critical Review of Potentialities and Perspectives of Spent Coffee Grounds Biorefinery. J. Clean. Prod. 2019, 211, 1553–1566. [Google Scholar] [CrossRef]
- Ahmed, H.; Abolore, R.S.; Jaiswal, S.; Jaiswal, A.K. Toward Circular Economy: Potentials of Spent Coffee Grounds in Bioproducts and Chemical Production. Biomass 2024, 4, 286–312. [Google Scholar] [CrossRef]
- Kamil, M.; Ramadan, K.M.; Olabi, A.G.; Shanableh, A.; Ghenai, C.; Al Naqbi, A.K.; Awad, O.I.; Ma, X. Comprehensive Evaluation of the Life Cycle of Liquid and Solid Fuels Derived from Recycled Coffee Waste. Resour. Conserv. Recycl. 2019, 150, 104446. [Google Scholar] [CrossRef]
- Rajabi Hamedani, S.; Colantoni, A.; Bianchini, L.; Carnevale, M.; Paris, E.; Villarini, M.; Gallucci, F. Environmental Life Cycle Assessment of Spent Coffee Ground Pellet. Energy Rep. 2022, 8, 6976–6986. [Google Scholar] [CrossRef]
- Tian, H.; Zhou, T.; Huang, Z.; Wang, J.; Cheng, H.; Yang, Y. Integration of Spent Coffee Grounds Valorization for Co-Production of Biodiesel and Activated Carbon: An Energy and Techno-Economic Case Assessment in China. J. Clean. Prod. 2021, 324, 129187. [Google Scholar] [CrossRef]
SCG Origin, and Composition | Products and Applications | Valorizing Processes | Ref. | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Bio-Oil | Biochar | Biogas | Activated Carbon | Pyrolysis | Gasification | Hydrothermal Carbonization | Biological (Anaerobic Digestion) | ||||
Carbonization + Chem Act | Carbonization + Phy Act | Carbonization | |||||||||
✓ | × | × | × | × | × | × | × | × | × | × | [22] |
✓ | ✓ | ✓ | ✓ | × | × | × | ✓ | × | × | × | [23] |
× | ✓ | ✓ | ✓ | ✓ | × | × | ✓ | ✓ | × | × | [24] |
✓ | × | ✓ | × | ✓ | × | × | ✓ | × | ✓ | × | [25] |
✓ | ✓ | ✓ | ✓ | × | × | × | ✓ | × | × | ✓ | [26] |
✓ | × | ✓ | ✓ | ✓ | × | × | ✓ | × | × | ✓ | [27] |
✓ | ✓ | × | × | × | × | × | × | × | ✓ | × | [28] |
✓ | ✓ | × | × | × | ✓ | × | × | × | × | × | [29] |
✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | Current review |
Location/Coffee Type | C | H | N | O | S | Reference | ||
---|---|---|---|---|---|---|---|---|
wt% | ||||||||
Italy | 48.67 | 6.54 | 2.27 | 40.03 | 0.15 | [35] | ||
Malaysia/Arabica | 47.63 | 6.57 | 2.93 | 45.80 | 0.47 | [19] | ||
UK. 80% Arabica and 20% Robusta | 53.94 | 7.06 | 2.29 | 36.72 | - | [36] | ||
Canada | 50 | 6.7 | 2.5 | 39.0 | 0.9 | [10] | ||
United Arab Emirates | 48.9 | 6.80 | 2.88 | 41.2 | 0.250 | [37] | ||
Greece | 47.96 | 1.57 | 6.42 | 44.05 | - * 0.52 | [32] | ||
Mexico | 43.09 | 9.03 | 2.15 | 45.21 | [38] | |||
Germany | 56.3 | 7.7 | 1.8 | - | 0.47 | [39] | ||
Taiwan | 49.37 | 7.37 | 2.26 | 39.47 | 0.085 | [40] | ||
Italy/30% Arabica and the green beans | 68.52 | 11.04 | 1.40 | - | - | [34] | ||
Italy | 48.67 | 6.54 | 2.27 | 40.03 | - | [41] | ||
Location/Coffee Type | Cellulose | Hemicellulose | Extractives | Lignin | Protein | Fat | Ash | Reference |
wt% | ||||||||
Spain | 16.3 | 27.7 | 12.4 | 39.2 | 9.4 | 9.9 | 0.1 | [42] |
Malaysia/Arabica | 16.78 | 48.22 | 19.42 | 34.94 | - | - | - | [19] |
China | 12.3 | 38.4 | - | 22.9 | - | - | - | [43] |
Thailand | 10.6 | 41.5 | - | 44.5 | - | - | - | [44] |
Valorization Process | Products | Temperature Range (°C) | Effective Parameter | Ref. |
---|---|---|---|---|
Pyrolysis | Biochar, bio-oil, syngas | 300–700 | Reaction temperature | [46] |
Anaerobic digestion | Biogas | 35–60 | Carbon-Nitrogen ratio | [47] |
Chemical activation | Activated carbon | 400 to 900 | Chemical agent | [48] |
Physical activation | Activated carbon | 800–1100 | Reaction Temperature | [49] |
Hydrothermal carbonization | Hydrochar | 180–250 | Reaction temperature | [50] |
Gasification | Biochar, syngas | above 700 | Gasification agent | [40] |
Activation Type | Agent | Activation Temperature (°C) | Reaction Time (h) | Surface Area (m2/g) | Yield (wt.%) | Ref. |
---|---|---|---|---|---|---|
Chemical activation | KOH | 800 | 4 | 1199 | - | [64] |
H3PO4 | 350–500 | 1 | 300–1209 | 40 | [65] | |
CaCO3 | 850 | 1 | 167 | 41.0 | [39] | |
K2CO3 | 600–800 | 1 or 5 | 2337 | 28.4 | [66] | |
NaOH | 80 | - * | 2.3 | - | [67] | |
ZnCl2 | 800 | 2 | 367 | 15 | [68] | |
Physical activation | Steam | 700 | - | 400–1300 | - | [69] |
CO2 | 700 | - | 630 | - | ||
Steam | 800 | 0.83 | 1181 | 9.6 | [70] | |
Steam | 700 | 2 | 641 | 13.4 | [71] | |
CO2 | 700 | 1 | 593 | - | [72] | |
Steam | 800 | 1 | 981.12 | - |
Gasifier Type | Advantages | Limitations | References |
---|---|---|---|
Updraft (Fixed Bed) | High thermal efficiency; simple design; handles high-moisture feed; low pressure drop | High tar content; poor response time; sensitivity to feed quality | [76] |
Downdraft (Fixed Bed) | Simple and low-cost; syngas with <0.1% tar; suitable for engines | Limited to dry feed; high exit gas temperatures; unconverted carbon (~5%) | [78] |
Cross-draft (Fixed Bed) | Fast heating; high CO concentration in gas output | High exit temperature; low H2 and CH4 content | [76] |
Bubbling Fluidized Bed | Excellent fuel mixing; handles high ash feed; flexible operation | Lower carbon conversion; moderate tar levels | [74] |
Circulating Fluidized Bed | Intense gas–solid contact; high carbon conversion; scalable; suitable for large-scale use | Agglomeration risk; material back-mixing; complex and costly setup | [74,76] |
Entrained Flow | High carbon conversion (~100%); short residence time; suitable for any feedstock | High operating temperature; material limitations due to ash melting | [74] |
Dual Fluidized Bed | Improved temperature control; enhanced tar reforming | Still under development; higher cost and design complexity | |
Supercritical Water | Converts wet biomass; eliminates drying step; energy-efficient | High-pressure operation; limited commercial availability | |
Plasma Gasifier | High-temperature operation; full decomposition of organics; vitrified slag from inorganics | Very high capital and operational costs; complex thermal management |
Feature | HTC (Hydrothermal Carbonization) | HTL (Hydrothermal Liquefaction) | HTG (Hydrothermal Gasification) |
---|---|---|---|
Typical Temperature Range | 180–250 °C | 250–370 °C | >350 °C (up to 700 °C for SCWG) |
Pressure Range | 1–5 MPa | 10–25 MPa | Up to 25 MPa (supercritical: >22 MPa) |
Medium | Subcritical water | Sub-/supercritical water | Supercritical or near-critical water |
Main Products | Hydro-char (solid), CO2-rich gas, aqueous byproducts | Bio-crude oil, aqueous phase, light gases | H2/CH4-rich syngas, minimal tar |
Feedstock Moisture Tolerance | High (70–90%) | High | Very high (>30%; up to 90%) |
Catalyst Use | Not essential, optional for tuning | Optional (alkaline catalysts for corrosion resistance) | Often required for selectivity and gas yield |
Energy Recovery | Low–moderate | Moderate–high (via crude upgrading) | High (especially with heat exchangers) |
Carbon Retention | High (in solid hydro-char) | Medium (in liquid bio-crude) | Low (converted to gas) |
Drying Requirement | None | None | None |
Applications | Fuel, soil amendment, adsorbents, supercapacitors | Liquid fuels, fuel upgrading | Clean syngas, hydrogen production |
Pyrolysis Type | Yield (wt%) | Temp (°C) | Residence Time (min) | Heating Rate (°C/min) | Carbon Content (wt%) | Specific Surface Area (m2/g) | Total Pore Volume (cm3/g) | Ref. |
---|---|---|---|---|---|---|---|---|
Slow | 5–35 | 300–700 | 50 | 5 | - * | - | - | [88] |
Slow | - | 850 | 60 | 10 | 75.3 | 492 | 0.238 | [89] |
Slow | 36 | 350 | 240 | 10 | 66.4 | - | - | [90] |
Slow | 33 | 600 | 68.6 | |||||
Slow | 35.1 | 350 | 45 | - | 63.9 | - | - | [91] |
Slow | 28 | 450 | 180 | 50 | 76.2 | 1.1 | - | [92] |
Slow | 31.3 | 400 | 60 | 5 | 51.3 | 179 | 0.13 | [10] |
- | 500 | 59 | 311 | 0.24 | ||||
25.4 | 600 | 64.3 | 539 | 0.32 | ||||
Slow | 23.5 | 500 | 120 | 10 | 47.5 | 40.1 | 0.019 | [93] |
Slow | 24.1 | 600 | 60 | 10 | 65.0 | - | - | [94] |
Slow | 20 | 350 | 60 | - | 65.40 | [95] | ||
Fast | 23.95 | 450 | - | - | - | - | [96] | |
21.93 | 500 | - | ||||||
23.77 | 550 |
Activation Method | Chemical Composition (wt%) | Properties | Ref. | |||||
---|---|---|---|---|---|---|---|---|
C | H | N | S | BET Surface Area (m2/g) | Pore Size (nm) | Total Pore Volume (cm3/g) | ||
H3PO4 chemical activation | 72.08 | 8.77 | 4.75 | 0.64 | 1420 | 2.1 | 0.747 | [101] |
Solid-state chemical activation with K2CO3 | 82.66 | 0.59 | 1.55 | 0.17 | 2337 | above 1.0 | 1.15 | [66] |
Hydrothermal carbonization followed by physical activation | 85.4 | 0.9 | 0.7 | 0.1 | 981 | 4.2 | 1.03 | [102] |
Thermochemical activation using KOH | - * | - | - | - | 400–1050 | 5–6.5 | 0.23–0.51 | [103] |
Chemical activation using KOH | - | - | - | - | 1566 | 1–2 | 0.694 | [104] |
Co-calcination with CaCO3 | 84.0 | 1.38 | 2.6 | 0.3 | 167 | - | 0.14 | [39] |
Chemical activation with KOH | 84.48 | - | - | 0.44 | - | - | - | [105] |
Carbonization | - | - | - | - | 1056 | 5–6.5 | 0.507 | [103] |
Pyrolysis + chemical activation using KOH | - | - | - | - | 1372 | - | 0.998 | [106] |
Chemical activation with H3PO4 followed by pyrolysis | - | - | - | - | 300–2118 | 2.6–3.4 | 0.038–0.127 | [65] |
HTC followed by KOH activation | 88.75 | - | 2.35 | - | 1835 | - | 1.81 | [107] |
Carbonization + post-treatment with NaOH and acetic acid | - | - | - | - | 43.18 | 3–6 | - | [108] |
Pyrolysis | - | - | - | - | 89.55–99.19 | 2.98–2.95 | 0.0168–0.0183 | [109] |
Carbonization under Ar, activation with CO2 | 93.00 (at%) | - | 2.38 (at%) | - | 2497 | 2.11 | 1.28 | [110] |
Pyrolysis + CO2 physical activation | 92.0 | 1.2 | 2.8 | - | 1224 | 1.70 | 0.63 | [111] |
Pyrolysis + chemical activation | 82.9 | 1.7 | 2.57 | 0.2 | 464 | 0.57 | 0.197 | [112] |
KOH activation followed by carbonization | 87.54 | - | 2.36 | - | 164.33 | - | 0.08021 | [113] |
Chemical activation with ZnCl2 followed by carbonization | 53.9 | 1.7 | 7.9 | - | 1039 | - | 0.481 | [114] |
Product Type | Activation Agent | Carbon Content (wt%) | Temp (°C) | Time (min) | Heating Rate °C/min | Yield (wt%) | Ref. |
---|---|---|---|---|---|---|---|
AC | CO2 | 93 | 900 | 180 | 15 | 41.3 | [110] |
KOH | 800 | 120 | 10 | 6.11 | [115] | ||
CaCO3 | 84 | 850 | 60 | 5 | 9.1 | [39] | |
CO2 | 76.2–77.5 | 750 | 30 | 10 | 16.7 | [116] | |
750 | 60 | 16.6 | |||||
800 | 30 | 12.7 | |||||
800 | 60 | 8.9 | |||||
KOH | - * | 800 | 240 | - | - | [64] | |
CO2 | - | 600 | 120 | 10 | 63.8 | [111] | |
700 | 60.2 | ||||||
800 | 55.3 | ||||||
CO2 | 400 | 60 | 20.12–23.61 | [117] | |||
475 | 65 | ||||||
550 | 120 | ||||||
ZnCl2, | 90.2 | 500 | 120 | 10 | 35 to 50 | [114] | |
KOH | 70.01 | 800 | 60 | 5 | [107] | ||
88.75 | |||||||
89.44 |
Valorization Pathway | Environmental Impact Summary | Techno-Economic Insight | Refs. |
---|---|---|---|
Biodiesel | High GHG emissions, high resource use due to solvents like hexane and methanol | Often economically unviable unless supported by co-products; high production cost | [174,175,176,180] |
Pyrolysis | Moderate GHG emissions; lower than biodiesel; improved with temperature optimization | Generally favorable economic feasibility, especially with biochar or co-products | [32,174,179] |
Hydrothermal Carbonization (HTC) | Low carbon footprint, low toxicity, favorable across impact categories | Energy-intensive; less common in large-scale studies but environmentally promising | [175,178] |
Anaerobic Digestion | Lowest overall environmental impact in multiple LCAs; mitigates waste emissions | Cost-effective under co-digestion scenarios; high methane yield with DSCGs | [54,175] |
Construction Materials (Geopolymers) | Reduces environmental footprint via waste reuse and energy savings | Cost-effective in green building; up to 37% cost savings observed | [184] |
Activated Carbon | Low to moderate impact depending on activation method | Profitable across different scenarios with positive NPV | [182] |
Biorefinery (Multi-product) | Varies by configuration; improved with waste stream integration | Promising when integrated with value-added products; scalability challenges | [181,183,185,186] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Al Balushi, J.; Al Saadi, S.; Ahanchi, M.; Al Attar, M.; Jafary, T.; Al Hinai, M.; Yeneneh, A.M.; Basha, J.S. A Comprehensive Review on Sustainable Conversion of Spent Coffee Grounds into Energy Resources and Environmental Applications. Biomass 2025, 5, 55. https://doi.org/10.3390/biomass5030055
Al Balushi J, Al Saadi S, Ahanchi M, Al Attar M, Jafary T, Al Hinai M, Yeneneh AM, Basha JS. A Comprehensive Review on Sustainable Conversion of Spent Coffee Grounds into Energy Resources and Environmental Applications. Biomass. 2025; 5(3):55. https://doi.org/10.3390/biomass5030055
Chicago/Turabian StyleAl Balushi, Jawaher, Shamail Al Saadi, Mitra Ahanchi, Manar Al Attar, Tahereh Jafary, Muna Al Hinai, Anteneh Mesfin Yeneneh, and J. Sadhik Basha. 2025. "A Comprehensive Review on Sustainable Conversion of Spent Coffee Grounds into Energy Resources and Environmental Applications" Biomass 5, no. 3: 55. https://doi.org/10.3390/biomass5030055
APA StyleAl Balushi, J., Al Saadi, S., Ahanchi, M., Al Attar, M., Jafary, T., Al Hinai, M., Yeneneh, A. M., & Basha, J. S. (2025). A Comprehensive Review on Sustainable Conversion of Spent Coffee Grounds into Energy Resources and Environmental Applications. Biomass, 5(3), 55. https://doi.org/10.3390/biomass5030055