Nature's Pharmacy: Ethnobotanical Approaches to Medicinal Plant Research for the Discovery and Development of Potential Phytochemicals

A special issue of Biology (ISSN 2079-7737). This special issue belongs to the section "Plant Science".

Deadline for manuscript submissions: 28 February 2026 | Viewed by 1930

Special Issue Editors


E-Mail Website
Guest Editor
Department of Pharmaceutical Care, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand
Interests: ethnopharmacology; molecular pharmacology; endocrine pharmacology; cardiovascular pharmacology; pharmacological effects of medicinal plants; pharmacotherapy
Special Issues, Collections and Topics in MDPI journals

E-Mail Website
Guest Editor
Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand
Interests: polymeric nanoparticles; biodegradable polymers; targeted drug delivery
Special Issues, Collections and Topics in MDPI journals

E-Mail Website
Guest Editor
Department of Pharmacognosy, Faculty of Pharmacy, Srinakharinwirot University, Nakhon Nayok 26120, Thailand
Interests: medicinal plants; traditional medicine; natural product chemistry; pharmacognosy; phytochemistry

Special Issue Information

Dear Colleagues,

This Special Issue, entitled "Nature's Pharmacy: Ethnobotanical Approaches to Medicinal Plant Research for the Discovery and Development of Potential Phytochemicals", welcomes the submission of original research and review articles that explore the vast therapeutic potential of medicinal plants rooted in traditional knowledge systems. We also welcome contributions that highlight the biological activity, mechanisms of action, and functional roles of plant-derived compounds in biological systems, including studies on in vitro and in vivo models that are relevant to basic biological processes.

Particular emphasis will be placed on studies that enhance our understanding of how plant extracts and isolated compounds interact with molecular pathways, regulate gene expression, or modulate cellular behavior. The Special Issue also aims to present interdisciplinary approaches that encompass molecular biology, cell biology, systems biology, toxicology, and computational modeling (e.g., molecular docking, network pharmacology) as tools to elucidate the biological basis of plant-based activities.

By uniting traditional knowledge with biological validation, this Special Issue aims to enhance our understanding of the roles of plant-derived substances in living systems. We aim to provide a scholarly platform for researchers focused on the biological foundations of traditional medicine and its implications for health and disease.

We look forward to receiving your contributions.

Prof. Dr. Supachoke Mangmool
Dr. Chuda Chittasupho
Dr. Sirivan Athikomkulchai
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Biology is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2700 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • medicinal plants
  • herbal medicine
  • ethnopharmacology
  • drug discovery
  • bioactive compounds
  • biological activity
  • molecular mechanism
  • signaling pathway

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • Reprint: MDPI Books provides the opportunity to republish successful Special Issues in book format, both online and in print.

Further information on MDPI's Special Issue policies can be found here.

Published Papers (3 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

23 pages, 3815 KB  
Article
Galangin and 1′-Acetoxychavicol Acetate from Galangal (Alpinia galanga) Suppress Lymphoma Growth via c-Myc Downregulation and Apoptosis Induction
by Sirinya Moakmamern, Lapamas Rueankham, Natsima Viriyaadhammaa, Kittikawin Panyakham, Natnicha Khakhai, Pinyaphat Khamphikham, Suwit Duangmano, Siriporn Okonogi, Sawitree Chiampanichayakul and Songyot Anuchapreeda
Biology 2025, 14(8), 1098; https://doi.org/10.3390/biology14081098 - 21 Aug 2025
Viewed by 342
Abstract
The c-Myc protein, a key regulator of cell proliferation, growth, and apoptosis in B-cell lymphocytes, is frequently dysregulated in Burkitt’s lymphoma. Zingiberaceae plants—galangal (Alpinia galanga), black turmeric (Curcuma aeroginosa), black ginger (Kaempferia parviflora), phlai lueang (Zingiber [...] Read more.
The c-Myc protein, a key regulator of cell proliferation, growth, and apoptosis in B-cell lymphocytes, is frequently dysregulated in Burkitt’s lymphoma. Zingiberaceae plants—galangal (Alpinia galanga), black turmeric (Curcuma aeroginosa), black ginger (Kaempferia parviflora), phlai lueang (Zingiber montanum), and phlai dum (Zingiber ottensii)—are traditionally used as herbal remedies and may serve as natural anti-lymphoma agents. In this study, extracts from these five plants were screened for cytotoxicity against Raji and Daudi lymphoma cell lines and compared with their effects on normal peripheral blood mononuclear cells (PBMCs). Galangal extract exhibited the strongest cytotoxic effects on lymphoma cells. Its major bioactive compounds, galangin and 1′-acetoxychavicol acetate (ACA), showed selective cytotoxicity, with ACA being more potent. ACA significantly suppressed both c-Myc and phosphorylated c-Myc (p-c-Myc) protein levels and induced dose-dependent apoptosis in lymphoma cells. Cell cycle analysis revealed arrest at specific phases, supporting its anti-proliferative action. Furthermore, network pharmacology and pathway enrichment analyses implicated ACA in the modulation of oncogenic PI3K-Akt and MAPK pathways. These findings highlight ACA as a promising plant-derived therapeutic candidate for lymphoma, acting through c-Myc suppression, cell cycle arrest, and apoptosis induction. Full article
Show Figures

Figure 1

24 pages, 7673 KB  
Article
Development, Molecular Docking, and Anti-Anemia Potential of Polyherbal Formulation
by Deepak Bharati, Sakshi Nirhali, Abhijeet Puri, Popat Mohite and Sudarshan Singh
Biology 2025, 14(8), 1052; https://doi.org/10.3390/biology14081052 - 14 Aug 2025
Viewed by 360
Abstract
Anemia remains a widespread public health concern, and the search for interventions demonstrating potent anti-anemic activity is critical for reducing its impact among high-risk populations. Conventional iron therapies are associated with several complications and potential adverse effects. This study explored a polyherbal approach [...] Read more.
Anemia remains a widespread public health concern, and the search for interventions demonstrating potent anti-anemic activity is critical for reducing its impact among high-risk populations. Conventional iron therapies are associated with several complications and potential adverse effects. This study explored a polyherbal approach to develop a safer and more effective alternative treatment for anemia. A molecular docking study was initially performed to screen and evaluate alizarin, catechin, kaempferol, recesmol, rubiadin, and rutin, which are known for their antioxidant and hematinic potential. Using AutoDock Vina, these compounds were docked against the target protein (PDB ID: 6MOE) with EPE and ferrous ions as controls. Rutin demonstrated the highest binding affinity of −6.4 kcal/moL, whereas alizarin and rubiadin both followed closely with −6.3 kcal/moL, while kaempferol and ellagic acid exhibited a binding affinity of −6.2 kcal/moL. In comparison, the reference compounds tested ferrous ions, and native ligand EPE (−5.0 kcal/moL) and iron (−4.8 kcal/moL), showed mild affinities. Moreover, the tested compounds demonstrated stable binding, suggesting their potential relevance in modulating anemia-related pathways. Based on the docking results and traditional therapeutic values, a polyherbal formulation (PHF) was developed using methanolic extracts of Trigonella foenum-graecum, Emblica officinalis, Pterocarpus marsupium, Withania somnifera, Asparagus racemosus, Zingiber officinale, Rubia cordifolia, Boerhavia diffusa, and Adhatoda vasica. Phytochemical screening via HPTLC analysis was used to quantify the presence of gallic and ellagic acids. In addition, PHF showed significant antioxidant potential (DPPH IC50: 14.29 µg/mL; FRAP IC50: 58.57 µg/mL) and iron content (98.47 ppm) values. Furthermore, in vivo evaluation using a phenylhydrazine-induced hemolytic anemia model in Sprague Dawley rats revealed that the PHF achieved complete restoration of RBCs (6.15 ± 0.04), hemoglobin (14.82 ± 0.03 g/dL), and hematocrit (43.08 ± 0.28%) in anemic rats and improved histopathological features in the liver, spleen, and bone marrow. These results demonstrate that combined molecular and pharmacological evidence support the efficacy of PHF as a promising candidate for the management of anemia by enhancing erythropoiesis, improving iron metabolism, and reducing oxidative stress. Full article
Show Figures

Graphical abstract

25 pages, 2029 KB  
Article
Germination Enhances Phytochemical Profiles of Perilla Seeds and Promotes Hair Growth via 5α-Reductase Inhibition and Growth Factor Pathways
by Anurak Muangsanguan, Warintorn Ruksiriwanich, Pichchapa Linsaenkart, Pipat Tangjaidee, Korawan Sringarm, Chaiwat Arjin, Pornchai Rachtanapun, Sarana Rose Sommano, Korawit Chaisu, Apinya Satsook and Juan Manuel Castagnini
Biology 2025, 14(7), 889; https://doi.org/10.3390/biology14070889 - 20 Jul 2025
Viewed by 734
Abstract
Seed germination is recognized for enhancing the accumulation of bioactive compounds. Perilla frutescens (L.) Britt., commonly known as perilla seed, is rich in fatty acids that may be beneficial for anti-hair loss. This study investigated the hair regeneration potential of perilla seed extracts—non-germinated [...] Read more.
Seed germination is recognized for enhancing the accumulation of bioactive compounds. Perilla frutescens (L.) Britt., commonly known as perilla seed, is rich in fatty acids that may be beneficial for anti-hair loss. This study investigated the hair regeneration potential of perilla seed extracts—non-germinated (NG-PS) and germinated in distilled water (0 ppm selenium; G0-PS), and germinated with 80 ppm selenium (G80-PS)—obtained from supercritical fluid extraction (SFE) and screw compression (SC). SFE extracts exhibited significantly higher levels of polyphenols, tocopherols, and fatty acids compared to SC extracts. Among the germinated groups, G0-PS showed the highest bioactive compound content and antioxidant capacity. Remarkably, treatment with SFE-G0-PS led to a significant increase in the proliferation and migration of hair follicle cells, reaching 147.21 ± 2.11% (p < 0.05), and resulted in complete wound closure. In addition, its antioxidant and anti-inflammatory properties were reflected by a marked scavenging effect on TBARS (59.62 ± 0.66% of control) and suppressed nitrite amounts (0.44 ± 0.01 µM). Moreover, SFE-G0-PS markedly suppressed SRD5A1-3 gene expression—key regulators in androgenetic alopecia—in both DU-145 and HFDPCs, with approximately 2-fold and 1.5-fold greater inhibition compared to finasteride and minoxidil, respectively. Simultaneously, it upregulated the expression of hair growth-related genes, including CTNNB1, SHH, SMO, GLI1, and VEGF, by approximately 1.5-fold, demonstrating stronger activation than minoxidil. These findings suggest the potential of SFE-G0-PS as a natural therapeutic agent for promoting hair growth and preventing hair loss. Full article
Show Figures

Figure 1

Back to TopTop