Biology, Ecology and Management of Aquatic Macrophytes and Algae

A special issue of Biology (ISSN 2079-7737). This special issue belongs to the section "Ecology".

Deadline for manuscript submissions: 31 May 2025 | Viewed by 20443

Special Issue Editors

State Key Laboratory of Marine Geology, Tongji University, Shanghai 200092, China
Interests: Ulva; Sargassum; algal bloom; ecological restoration; marine development and management; resource utilization; hydrophyte; intertidal zone; biodiversity; water quality; nitrogen cycle; phosphorus cycle; epizoan; epiphyte
Special Issues, Collections and Topics in MDPI journals

E-Mail Website
Guest Editor
Ocean College, Fujian Polytechnic Normal University, Fuzhou 350300, China
Interests: macroalgae; microalgae; algal research; aquatic macrophytes; marine resources and environment; ecological restoration; aquaculture; intertidal zone; biodiversity; harmful algal blooms and control; mangrove forest; physiology; ecology; genetics and breeding of marine algae
School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
Interests: plant physiology; ecological restoration; coastal wetland development and management; water security; phytoplankton; harmful algal bloom; eutrophication; plants landscape; resource utilization of aquatic plants

Special Issue Information

Dear Colleagues,

Aquatic macrophytes and algae play a significant role in improving water quality and inhibiting microalgal blooms. Simultaneously, they can provide habitats and foraging places for aquatic animals, effectively maintaining the stability of ecosystems and biodiversity levels. Therefore, aquatic macrophytes and algae are often used in the restoration of intertidal zones, lakes, and river ecosystems. In contrast, some aquatic macrophytes and algae in natural ecosystems form dominant species, leading to large-scale ecological disasters such as green tides and golden tides, with a significant impact on the management and healthy development of regional ecosystems. 

This Special Issue aims to provide an academically inclusive platform for open discussions among scholars. In this Special Issue, we welcome original research articles and reviews with a suggested minimum word count of 4000 words. Additionally, scoping review-type articles can be submitted as review articles. 

Research topics may include (but are not limited to) the following: (1) the key role of aquatic macrophytes and algae in ecosystems; (2) the application of aquatic macrophytes and algae in ecological restoration engineering; (3) the allelopathy of aquatic macrophytes and algae to algal bloom (red tide and Cyanobacteria bloom) species; (4) ecological risks and management measures associated with macroalgal blooms or invasive species; and (5) biodiversity conservation and ecological management issues to be considered in the process of ecological restoration. In addition, we encourage scholars to submit other articles related to the above themes. It is with great enthusiasm that we invite you to contribute to the development of the academic subject in this field. 

We look forward to receiving your contributions.

Dr. Jinlin Liu
Dr. Shuang Zhao
Dr. Wei Liu
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Biology is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2700 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • aquatic macrophytes and algae
  • ecological planning and management
  • harmful algal blooms and control
  • biological resources and environment
  • mangrove forest
  • ecological restoration
  • biodiversity
  • plant physiology
  • water security

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • Reprint: MDPI Books provides the opportunity to republish successful Special Issues in book format, both online and in print.

Further information on MDPI's Special Issue policies can be found here.

Published Papers (11 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Editorial

Jump to: Research, Review

13 pages, 670 KiB  
Editorial
Biology, Ecology and Management of Aquatic Macrophytes and Algae (Volume I)
by Jinlin Liu, Wei Liu and Shuang Zhao
Biology 2025, 14(3), 246; https://doi.org/10.3390/biology14030246 - 28 Feb 2025
Viewed by 636
Abstract
Aquatic macrophytes and algae constitute essential components of aquatic ecosystems, fulfilling diverse and critical roles in sustaining ecological integrity and equilibrium [...] Full article
(This article belongs to the Special Issue Biology, Ecology and Management of Aquatic Macrophytes and Algae)
Show Figures

Figure 1

Research

Jump to: Editorial, Review

18 pages, 6282 KiB  
Article
Implications of Environmental Variations on Saccharina japonica Cultivation in Xiangshan Bay, China
by Yikang Bao and Peng Xu
Biology 2025, 14(2), 175; https://doi.org/10.3390/biology14020175 - 9 Feb 2025
Cited by 1 | Viewed by 610
Abstract
This study took Xiangshan Bay as an example to illustrate the variation characteristics of the physicochemical environments (temperature, salinity, light, nutrients, and currents) during one kelp cultivation cycle. The study was conducted from November 2020 to May 2021 through tracking down observations. Furthermore, [...] Read more.
This study took Xiangshan Bay as an example to illustrate the variation characteristics of the physicochemical environments (temperature, salinity, light, nutrients, and currents) during one kelp cultivation cycle. The study was conducted from November 2020 to May 2021 through tracking down observations. Furthermore, the environmental factors were evaluated using suitability functions of kelp growth, aiming to provide references for promoting kelp cultivation in South China. We discussed the self-limiting effect of nutrients in the culture zone. The results showed that the average temperature, salinity, and light intensity during the cruises in Xiangshan Bay kelp farm were characterized by seasonal variations. Temperature was found to be the most critical environmental factor in determining the kelp cultivation window and hence the yield in Xiangshan Bay. The dissolved inorganic nitrogen (DIN) concentrations initially decreased and then increased, while the dissolved inorganic phosphorus (DIP) concentrations remained decreasing along with the kelp cultivation. The surface tide currents were dramatically attenuated by the suspended kelp cultivation, while the quasi-steady circulations which played a key role in nutrient supplementation for kelp cultivation were not weakened by the kelp cultivation. Among the cruises, the suitability indices’ ranges for temperature, salinity, light, and nutrients were 0.02–0.94, 0.96–0.99, 0.97–1, 0.96–0.97 (DIN), and 0.92–0.95 (DIP), respectively. The results of the suitability functions demonstrated that the salinity and light conditions in Xiangshan Bay were very suitable for kelp cultivation and would not cause significant cultivation risks. Although the cultivated kelp could greatly absorb nutrients, the suitability index of nutrients remained adequate even during the late stage of cultivation, indicating the present kelp cultivation scale has not reached the carrying capacity of Xiangshan Bay and there is still much potential for development. To this end, further selective breeding of the thermal tolerance variety has become the key to improving the kelp cultivation performance in Xiangshan Bay. Meanwhile, the self-limiting effects in relation to nutrients are not significant in the Xiangshan Bay kelp farm, but it might be more significant in other kelp farms. Full article
(This article belongs to the Special Issue Biology, Ecology and Management of Aquatic Macrophytes and Algae)
Show Figures

Figure 1

15 pages, 3705 KiB  
Article
Cloning and Functional Analysis of a Zeaxanthin Epoxidase Gene in Ulva prolifera
by Hongyan He, Xiuwen Yang, Aurang Zeb, Jiasi Liu, Huiyue Gu, Jieru Yang, Wenyu Xiang and Songdong Shen
Biology 2024, 13(9), 695; https://doi.org/10.3390/biology13090695 - 5 Sep 2024
Cited by 1 | Viewed by 1410
Abstract
The xanthophyll cycle is a photoprotective mechanism in plants and algae, which protects the photosynthetic system from excess light damage under abiotic stress. Zeaxanthin is considered to play a pivotal role in this process. In this study, the relative content of xanthophylls was [...] Read more.
The xanthophyll cycle is a photoprotective mechanism in plants and algae, which protects the photosynthetic system from excess light damage under abiotic stress. Zeaxanthin is considered to play a pivotal role in this process. In this study, the relative content of xanthophylls was determined using HPLC-MS/MS in Ulva prolifera exposed to different salinities. The results showed that high-salt stress significantly increased the relative content of xanthophylls and led to the accumulation of zeaxanthin. It was speculated that the accumulated zeaxanthin may contribute to the response of U. prolifera to high-salt stress. Zeaxanthin epoxidase (ZEP) is a key enzyme in the xanthophyll cycle and is also involved in the synthesis of abscisic acid and carotenoids. In order to explore the biological function of ZEP, a ZEP gene was cloned and identified from U. prolifera. The CDS of UpZEP is 1122 bp and encodes 373 amino acids. Phylogenetic analysis showed that UpZEP clusters within a clade of green algae. The results of qRT-PCR showed that high-salt stress induced the expression of UpZEP. In addition, heterologous overexpression of the UpZEP gene in yeast and Chlamydomonas reinhardtii improved the salt tolerance of transgenic organisms. In conclusion, the UpZEP gene may be involved in the response of U. prolifera to high-salt stress and can improve the high-salt tolerance of transgenic organisms. Full article
(This article belongs to the Special Issue Biology, Ecology and Management of Aquatic Macrophytes and Algae)
Show Figures

Figure 1

14 pages, 4799 KiB  
Article
Protective Effect of Polysaccharides Isolated from Sargassum horneri against H2O2-Induced Oxidative Stress Both In Vitro, in Vero Cells, and In Vivo in Zebrafish
by Shuangyan Wei, Li Wang, Jia Yang, Ruihang Xu, Rui Jia and Peimin He
Biology 2024, 13(9), 651; https://doi.org/10.3390/biology13090651 - 23 Aug 2024
Cited by 1 | Viewed by 1502
Abstract
The extensive outbreak of Sargassum horneri in China has not merely imposed a severe threat to the ecological environment and human life in coastal waters but also impeded the development of waterway transportation and the local economy. Consequently, we isolated polysaccharides from S. [...] Read more.
The extensive outbreak of Sargassum horneri in China has not merely imposed a severe threat to the ecological environment and human life in coastal waters but also impeded the development of waterway transportation and the local economy. Consequently, we isolated polysaccharides from S. horneri, designated as SHP, and evaluated the antioxidant activity of SHP both in vitro and in vivo by investigating the effect of SHP on H2O2-induced African green monkey kidney cells (Vero cells) and zebrafish. The results demonstrated that SHP can enhance the activities of superoxide dismutase, catalase, and glutathione peroxidase in zebrafish. It also effectively inhibits micro malondialdehyde and ROS levels in Vero cells and zebrafish to mitigate the oxidative damage caused by H2O2, thereby achieving the protective effect of SHP on Vero cells and zebrafish. In conclusion, SHP holds the potential as a natural antioxidant. SHP can be contemplated for utilization as a natural antioxidant in the biomedical, cosmetic, and food industries, thereby alleviating the environmental stress caused by S. horneri and achieving resource utilization. Full article
(This article belongs to the Special Issue Biology, Ecology and Management of Aquatic Macrophytes and Algae)
Show Figures

Figure 1

16 pages, 9613 KiB  
Article
Effects of Ocean Acidification and Temperature Coupling on Photosynthetic Activity and Physiological Properties of Ulva fasciata and Sargassum horneri
by Kai Wang, Xiang Tao, Shouyu Zhang and Xu Zhao
Biology 2024, 13(8), 640; https://doi.org/10.3390/biology13080640 - 21 Aug 2024
Cited by 1 | Viewed by 1045
Abstract
To investigate the ecological impacts of macroalgae in the framework of shifting global CO2 concentrations, we conducted a study utilizing Ulva fasciata and Sargassum horneri specimens sourced from the Ma’an Archipelago in Zhejiang Province on how ocean acidification (OA) and temperature changes [...] Read more.
To investigate the ecological impacts of macroalgae in the framework of shifting global CO2 concentrations, we conducted a study utilizing Ulva fasciata and Sargassum horneri specimens sourced from the Ma’an Archipelago in Zhejiang Province on how ocean acidification (OA) and temperature changes interact to affect the photosynthetic physiological responses of macroalgae. The results of the study showed that OA reduced the tolerance of U. fasciata to bright light at 20 °C, resulting in more pronounced photoinhibition, while 15 °C caused significant inhibition of U. fasciata, reducing its growth and photosynthetic activity, but OA alleviated the inhibition and promoted the growth of the alga to a certain extent. The tolerance of S. horneri to bright light was also reduced at 20 °C; the inhibition was relieved at 15 °C, and the OA further improved the algal growth. The Relative Growth Rate (RGR), photosynthetic pigment content, and the release of the dissolved organic carbon (DOC) of U. fasciata were mainly affected by the change in temperature; the growth of the alga and the synthesis of metabolites were more favored by 20 °C. A similar temperature dependence was observed for S. horneri, with faster growth and high metabolism at 15 °C. Our results suggest that OA reduces the tolerance of macroalgae to high light at suitable growth temperatures; however, at unsuitable growth temperatures, OA effectively mitigates this inhibitory effect and promotes algal growth. Full article
(This article belongs to the Special Issue Biology, Ecology and Management of Aquatic Macrophytes and Algae)
Show Figures

Figure 1

16 pages, 2273 KiB  
Article
Enhanced Soil Fertility and Carbon Sequestration in Urban Green Spaces through the Application of Fe-Modified Biochar Combined with Plant Growth-Promoting Bacteria
by Guoyao Niu, Chiquan He, Shaohua Mao, Zongze Chen, Yangyang Ma and Yi Zhu
Biology 2024, 13(8), 611; https://doi.org/10.3390/biology13080611 - 12 Aug 2024
Cited by 6 | Viewed by 2159
Abstract
The soil of urban green spaces is severely degraded due to human activities during urbanization, and it is crucial to investigate effective measures that can restore the ecological functions of the soil. This study investigated the effects of plant growth promoting bacteria ( [...] Read more.
The soil of urban green spaces is severely degraded due to human activities during urbanization, and it is crucial to investigate effective measures that can restore the ecological functions of the soil. This study investigated the effects of plant growth promoting bacteria (Bacillus clausii) and Fe-modified biochar on soil fertility increases and mechanisms of carbon sequestration. Additionally, the effects on C-cycling-related enzyme activity and the bacterial community were also explored. Six treatments included no biochar or Bacillus clausii suspension added (CK), only Bacillus clausii suspension (BC), only biochar (B), only Fe-modified biochar (FeB), biochar combined with Bacillus clausii (BBC), and Fe-modified biochar combined with Bacillus clausii (FeBBC). Compared with other treatments, the FeBBC treatment significantly decreased soil pH, alleviated soil alkalization, and increased the alkali-hydro nitrogen content in the soil. Compared to the individual application of FeB and BC, the FeBBC treatment significantly improved aggregates’ stability and positively improved soil fertility and ecological function. Additionally, compared to the individual application of FeB and BC, the soil organic carbon (SOC), particulate organic carbon (POC), and soil inorganic carbon (SIC) contents for the FeBBC-treated soil increased by 28.46~113.52%, 66.99~434.72%, and 7.34~10.04%, respectively. In the FeBBC treatment, FeB can improve soil physicochemical properties and provide bacterial attachment sites, increase the abundance and diversity of bacterial communities, and promote the uniform distribution of carbon-related bacteria in the soil. Compared to a single ecological restoration method, FeBBC treatment can improve soil fertility and carbon sequestration, providing important reference values for urban green space soil ecological restoration. Full article
(This article belongs to the Special Issue Biology, Ecology and Management of Aquatic Macrophytes and Algae)
Show Figures

Graphical abstract

11 pages, 2805 KiB  
Article
Evaluation of Two Ecosystem Services Provided by a Pistia stratiotes Population on the Pacific Coast of South America
by Adela Zamora-Aranda and Héctor Aponte
Biology 2024, 13(8), 573; https://doi.org/10.3390/biology13080573 - 29 Jul 2024
Cited by 1 | Viewed by 1916
Abstract
One of the most fascinating wetlands on Peru’s central coast is the Santa Rosa wetland (Chancay, Lima), an ecosystem threatened by anthropogenic activities. Some of these impacts have led to the uncontrolled growth of Pistia stratiotes, an invasive aquatic plant. This study [...] Read more.
One of the most fascinating wetlands on Peru’s central coast is the Santa Rosa wetland (Chancay, Lima), an ecosystem threatened by anthropogenic activities. Some of these impacts have led to the uncontrolled growth of Pistia stratiotes, an invasive aquatic plant. This study sought to quantify the regulation and provisioning of ecosystem services provided by P. stratiotes using carbon storage and the provision of biomass as indicators. To this end, the biomasses of 50 plots measuring 0.0625 m2 were weighed and georeferenced and the percentages of dry biomass (%DB) and total organic carbon in the biomass (%C) were quantified. The biomass and its coordinates were entered into ArcGIS and a Kriging interpolation technique was applied to determine the total amount of biomass (B). It was found that P. stratiotes stored 3942.57 tCO2 and that 2132.41 tons of biomass could be obtained for fodder. The total carbon stored by this aquatic plant represented 28.46% of the total carbon sequestered in the wetland ecosystem by vascular plants, suggesting that its contribution to the carbon cycle is significant. This is the first study to estimate the biomass of a floating aquatic plant population in a coastal Peruvian wetland and is a pioneering study addressing the in situ carbon estimation of Peruvian floating aquatic plants. The results and methods proposed in this research will serve in the evaluation of the potential of ecosystem services among similar populations of floating aquatic species. In addition, the data presented can be used to establish plans for the management and use of this biomass in the production of soil fertilizers and cattle forage. Full article
(This article belongs to the Special Issue Biology, Ecology and Management of Aquatic Macrophytes and Algae)
Show Figures

Figure 1

18 pages, 3370 KiB  
Article
Phytoplankton Diversity, Spatial Patterns, and Photosynthetic Characteristics Under Environmental Gradients and Anthropogenic Influence in the Pearl River Estuary
by Jing Xia, Haojie Hu, Xiu Gao, Jinjun Kan, Yonghui Gao and Ji Li
Biology 2024, 13(7), 550; https://doi.org/10.3390/biology13070550 - 22 Jul 2024
Cited by 5 | Viewed by 2937
Abstract
The Pearl River Estuary (PRE) is one of the world’s most urbanized subtropical coastal systems. It presents a typical environmental gradient suitable for studying estuarine phytoplankton communities’ dynamics and photosynthetic physiology. In September 2018, the maximum photochemical quantum yield (Fv/Fm [...] Read more.
The Pearl River Estuary (PRE) is one of the world’s most urbanized subtropical coastal systems. It presents a typical environmental gradient suitable for studying estuarine phytoplankton communities’ dynamics and photosynthetic physiology. In September 2018, the maximum photochemical quantum yield (Fv/Fm) of phytoplankton in different salinity habitats of PRE (oceanic, estuarine, and freshwater zones) was studied, revealing a complex correlation with the environment. Fv/Fm of phytoplankton ranged from 0.16 to 0.45, with taxa in the upper Lingdingyang found to be more stressed. Community composition and structure were analyzed using 18S rRNA, accompanied by a pigment analysis utilized as a supplementary method. Nonmetric multidimensional scaling analysis indicated differences in the phytoplankton spatial distribution along the estuarine gradients. Specificity-occupancy plots identified different specialist taxa for each salinity habitat. Dinophyta and Haptophyta were the predominant taxa in oceanic areas, while Chlorophyta and Cryptophyta dominated freshwater. Bacillariophyta prevailed across all salinity gradients. Canonical correlation analysis and Mantel tests revealed that temperature, salinity, and elevated nutrient levels (i.e., NO3-N, PO43−-P, and SiO32−-Si) associated with anthropogenic activities significantly influenced the heterogeneity of community structure. The spatial distribution of phytoplankton, along with in situ photosynthetic characteristics, serves as a foundational basis to access estuarine primary productivity, as well as community function and ecosystem health. Full article
(This article belongs to the Special Issue Biology, Ecology and Management of Aquatic Macrophytes and Algae)
Show Figures

Figure 1

14 pages, 4876 KiB  
Article
Rotation Culture of Macroalgae Based on Photosynthetic Physiological Characteristics of Algae
by Xiaopeng Cheng, Xu Zhao, Jun Lin, Shouyu Zhang, Zhenhua Wang, Hong Huang, Kai Wang and Jianqu Chen
Biology 2024, 13(6), 459; https://doi.org/10.3390/biology13060459 - 20 Jun 2024
Cited by 1 | Viewed by 1499
Abstract
Seaweed farming has made outstanding contributions to food supply and the restoration of the ecological environment despite the limitations in production and ecological effects due to the current intensive farming of single algae species. These limitations can be overcome by selecting suitable algal [...] Read more.
Seaweed farming has made outstanding contributions to food supply and the restoration of the ecological environment despite the limitations in production and ecological effects due to the current intensive farming of single algae species. These limitations can be overcome by selecting suitable algal species based on their physiological characteristics and by constructing a large-scale seaweed rotation model. This study carried out a trial culture in aquaculture sea areas, and performed in situ monitoring of the environmental conditions and physiological characteristics of Saccharina japonica, Hizikia fusiformis, and Gracilariopsis lemaneiformis. Additionally, a comparative analysis of the three macroalgae at different times was conducted to determine their response characteristics to environmental factors. The results showed that: (1) The three macroalgae had varying light tolerance. The effective quantum yield of Hizikia fusiformis and Gracilariopsis lemaneiformis remained unchanged during the changes in light environment, while that of Saccharina japonica first decreased and then recovered. (2) The relative electron transport rates of the three macroalgae were significantly different under different temperature conditions. Hizikia fusiformis and Saccharina japonica exhibited the highest relative electron transport rates (70.45 and 106.75, respectively) in May (20.3 °C). Notably, Gracilariopsis lemaneiformis demonstrated good growth and exhibited the highest relative electron transport rate (93.07) in September (27.5 °C). These findings collectively support the feasibility of establishing a macroalgae rotation model. Based on the combined environmental conditions of the seas in Shandong, Zhejiang, and Fujian, a macroalgae rotation model was proposed. The application of this model in the construction of artificial seaweed farms in marine ranches can provide a stable output of large-scale seaweed production and ecological benefits. Full article
(This article belongs to the Special Issue Biology, Ecology and Management of Aquatic Macrophytes and Algae)
Show Figures

Figure 1

Review

Jump to: Editorial, Research

30 pages, 3343 KiB  
Review
Typical Marine Ecological Disasters in China Attributed to Marine Organisms and Their Significant Insights
by Lulu Yao, Peimin He, Zhangyi Xia, Jiye Li and Jinlin Liu
Biology 2024, 13(9), 678; https://doi.org/10.3390/biology13090678 - 30 Aug 2024
Cited by 6 | Viewed by 3276
Abstract
Owing to global climate change or the ever-more frequent human activities in the offshore areas, it is highly probable that an imbalance in the offshore ecosystem has been induced. However, the importance of maintaining and protecting marine ecosystems’ balance cannot be overstated. In [...] Read more.
Owing to global climate change or the ever-more frequent human activities in the offshore areas, it is highly probable that an imbalance in the offshore ecosystem has been induced. However, the importance of maintaining and protecting marine ecosystems’ balance cannot be overstated. In recent years, various marine disasters have occurred frequently, such as harmful algal blooms (green tides and red tides), storm surge disasters, wave disasters, sea ice disasters, and tsunami disasters. Additionally, overpopulation of certain marine organisms (particularly marine faunas) has led to marine disasters, threatening both marine ecosystems and human safety. The marine ecological disaster monitoring system in China primarily focuses on monitoring and controlling the outbreak of green tides (mainly caused by outbreaks of some Ulva species) and red tides (mainly caused by outbreaks of some diatom and dinoflagellate species). Currently, there are outbreaks of Cnidaria (Hydrozoa and Scyphozoa organisms; outbreak species are frequently referred to as jellyfish), Annelida (Urechis unicinctus Drasche, 1880), Mollusca (Philine kinglipini S. Tchang, 1934), Arthropoda (Acetes chinensis Hansen, 1919), and Echinodermata (Asteroidea organisms, Ophiuroidea organisms, and Acaudina molpadioides Semper, 1867) in China. They not only cause significant damage to marine fisheries, tourism, coastal industries, and ship navigation but also have profound impacts on marine ecosystems, especially near nuclear power plants, sea bathing beaches, and infrastructures, posing threats to human lives. Therefore, this review provides a detailed introduction to the marine organisms (especially marine fauna species) causing marine biological disasters in China, the current outbreak situations, and the biological backgrounds of these outbreaks. This review also provides an analysis of the causes of these outbreaks. Furthermore, it presents future prospects for marine biological disasters, proposing corresponding measures and advocating for enhanced resource utilization and fundamental research. It is recommended that future efforts focus on improving the monitoring of marine biological disasters and integrating them into the marine ecological disaster monitoring system. The aim of this review is to offer reference information and constructive suggestions for enhancing future monitoring, early warning systems, and prevention efforts related to marine ecological disasters in support of the healthy development and stable operation of marine ecosystems. Full article
(This article belongs to the Special Issue Biology, Ecology and Management of Aquatic Macrophytes and Algae)
Show Figures

Figure 1

16 pages, 5580 KiB  
Review
Review of Allelopathy in Green Tides: The Case of Ulva prolifera in the South Yellow Sea
by Yinqing Zeng, Xinlan Yang, Zhangyi Xia, Runze Chen, Faqing He, Jianheng Zhang and Peimin He
Biology 2024, 13(6), 456; https://doi.org/10.3390/biology13060456 - 20 Jun 2024
Cited by 3 | Viewed by 2036
Abstract
The proliferation of large green macroalgae in marine environments has led to the occurrence of green tides, particularly in the South Yellow Sea region of China, where Ulva prolifera has been identified as the primary species responsible for the world’s largest green tide [...] Read more.
The proliferation of large green macroalgae in marine environments has led to the occurrence of green tides, particularly in the South Yellow Sea region of China, where Ulva prolifera has been identified as the primary species responsible for the world’s largest green tide events. Allelopathy among plants is a critical factor influencing the dynamics of green tides. This review synthesizes previous research on allelopathic interactions within green tides, categorizing four extensively studied allelochemicals: fatty acids, aldehydes, phenols, and terpenes. The mechanisms by which these compounds regulate the physiological processes of green tide algae are examined in depth. Additionally, recent advancements in the rapid detection of allelochemicals are summarized, and their potential applications in monitoring green tide events are discussed. The integration of advanced monitoring technologies, such as satellite observation and environmental DNA (eDNA) analysis, with allelopathic substance detection is also explored. This combined approach addresses gaps in understanding the dynamic processes of green tide formation and provides a more comprehensive insight into the mechanisms driving these phenomena. The findings and new perspectives presented in this review aim to offer valuable insights and inspiration for researchers and policymakers. Full article
(This article belongs to the Special Issue Biology, Ecology and Management of Aquatic Macrophytes and Algae)
Show Figures

Figure 1

Back to TopTop