Novel Approaches for the Treatment of Maxillofacial Defects: From Bone to Skin Regeneration

A special issue of Bioengineering (ISSN 2306-5354). This special issue belongs to the section "Regenerative Engineering".

Deadline for manuscript submissions: closed (20 January 2023) | Viewed by 24439

Special Issue Editors


E-Mail Website
Guest Editor
UMR 1026 BioTis, Bioingénierie Tissulaire, Université de Bordeaux, 146 rue Léo Saignat, CEDEX, 33076 BORDEAUX, France
Interests: laser-assisted bioprinting; bone regeneration; vascularization; tissue engineering; biofabrication; stem cells

E-Mail Website
Guest Editor
UMR 1026 BioTis, Bioingénierie Tissulaire, Université de Bordeaux, 146 rue Léo Saignat, CEDEX, 33076 BORDEAUX, France
Interests: laser-assisted bioprinting; bone regeneration; vascularization; tissue engineering; biofabrication; stem cells

Special Issue Information

Dear Colleagues,

The management of cranio-maxillofacial defects, due to infection, tumor, trauma, or genetic disorders, includes the treatment of bone loss and surrounding soft tissue. Despite progress in surgery and in the standard reconstruction strategies, infection, graft vascularization and wound healing remain an issue in craniofacial defects. 

This Special Issue of Bioengineering on “Novel Approaches for the Treatment of Maxillofacial Defects: From Bone to Skin Regeneration” will therefore focus on original research papers and comprehensive reviews, dealing with the use of new technologies to promote bone and skin regeneration.

Topics of interest for this Special Issue include but are not limited to the following:

  • Lasers used to improve bone and skin tissue repair;
  • Tissue engineering strategies and 3D printing for bone and skin regeneration;
  • Scaffolds and bioinks developed for bone and skin tissue engineering;
  • New imaging methods or therapeutics related to the management of bone and/or skin defects;
  • Robotized surgery and medicine for the treatment of maxillofacial defects.

We look forward to bringing together contributions from worldwide experts on bone and skin regeneration, with high expectations regarding the transition of these innovative technologies from bench to bedside.

Dr. Olivia Kérourédan
Dr. Raphael Devillard
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Bioengineering is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2700 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • laser-assisted bioprinting
  • tissue engineering
  • biofabrication
  • regenerative medicine
  • stem cells
  • fluidics
  • optics
  • photonics
  • imaging methods

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • e-Book format: Special Issues with more than 10 articles can be published as dedicated e-books, ensuring wide and rapid dissemination.

Further information on MDPI's Special Issue polices can be found here.

Published Papers (7 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

Jump to: Review, Other

19 pages, 9239 KiB  
Article
Evaluation of a Granular Bone Substitute for Bone Regeneration Using an Optimized In Vivo Alveolar Cleft Model
by Alban Destrez, Emilien Colin, Sylvie Testelin, Bernard Devauchelle, Stéphanie Dakpé and Marie Naudot
Bioengineering 2023, 10(9), 1035; https://doi.org/10.3390/bioengineering10091035 - 2 Sep 2023
Cited by 1 | Viewed by 1164
Abstract
Alveolar cleft is a common congenital deformity that requires surgical intervention, notably using autologous bone grafts in young children. Bone substitutes, in combination with mesenchymal stem cells (MSCs), have shown promise in the repair of these defects. This study aimed to evaluate the [...] Read more.
Alveolar cleft is a common congenital deformity that requires surgical intervention, notably using autologous bone grafts in young children. Bone substitutes, in combination with mesenchymal stem cells (MSCs), have shown promise in the repair of these defects. This study aimed to evaluate the regenerative capabilities of a granular bone substitute using an optimized alveolar cleft model. Thirty-six rats underwent a surgical procedure for the creation of a defect filled with a fragment of silicone. After 5 weeks, the silicone was removed and the biomaterial, with or without Wharton’s jelly MSCs, was put into the defect, except for the control group. The rats underwent μCT scans immediately and after 4 and 8 weeks. Analyses showed a statistically significant improvement in bone regeneration in the two treatment groups compared with control at weeks 4 and 8, both for bone volume (94.64% ± 10.71% and 91.33% ± 13.30%, vs. 76.09% ± 7.99%) and mineral density (96.13% ± 24.19% and 93.01% ± 27.04%, vs. 51.64% ± 16.51%), but without having fully healed. This study validates our optimized alveolar cleft model in rats, but further work is needed to allow for the use of this granular bone substitute in the treatment of bone defects. Full article
Show Figures

Figure 1

18 pages, 2925 KiB  
Article
Comparison of Low and High Temperature Sintering for Processing of Bovine Bone as Block Grafts for Oral Use: A Biological and Mechanical In Vitro Study
by Asrar Elahi, Warwick Duncan, Kai-Chun Li, John Neil Waddell and Dawn Coates
Bioengineering 2023, 10(4), 473; https://doi.org/10.3390/bioengineering10040473 - 13 Apr 2023
Cited by 1 | Viewed by 2726
Abstract
Large oral bone defects require grafting of bone blocks rather than granules to give physically robust, biocompatible and osteoconductive regeneration. Bovine bone is widely accepted as a source of clinically appropriate xenograft material. However, the manufacturing process often results in both reduced mechanical [...] Read more.
Large oral bone defects require grafting of bone blocks rather than granules to give physically robust, biocompatible and osteoconductive regeneration. Bovine bone is widely accepted as a source of clinically appropriate xenograft material. However, the manufacturing process often results in both reduced mechanical strength and biological compatibility. The aim of this study was to assess bovine bone blocks at different sintering temperatures and measure the effects on mechanical properties and biocompatibility. Bone blocks were divided into four groups; Group 1: Control (Untreated); Group 2: Initial boil for 6 h; Group 3: Boil 6 h followed by sintering at 550 °C for 6 h; Group 4: Boil 6 h followed by sintering at 1100 °C for 6 h. Samples were assessed for their purity, crystallinity, mechanical strength, surface morphology, chemical composition, biocompatibility and clinical handling properties. Statistical analysis was performed using one-way ANOVA and post-hoc Tukey’s tests for normally distributed and Friedman test for abnormally distributed quantitative data from compression tests and PrestoBlue™ metabolic activity tests. The threshold for statistical significance was set at p < 0.05. The results showed that higher temperature sintering (Group 4) removed all organic material (0.02% organic components and 0.02% residual organic components remained) and increased crystallinity (95.33%) compared to Groups 1–3. All test groups (Group 2–4) showed decreased mechanical strength (MPa: 4.21 ± 1.97, 3.07 ± 1.21, 5.14 ± 1.86, respectively) compared with raw bone (Group 1) (MPa: 23.22 ± 5.24, p <0.05), with micro-cracks seen under SEM in Groups 3 and 4. Group 4 had the highest biocompatibility (p < 0.05) with osteoblasts as compared to Group 3 at all time points in vitro. Clinical handling tests indicated that Group 4 samples could better withstand drilling and screw placement but still demonstrated brittleness compared to Group 1. Hence, bovine bone blocks sintered at 1100 °C for 6 h resulted in highly pure bone with acceptable mechanical strength and clinical handling, suggesting it is a viable option as a block grafting material. Full article
Show Figures

Graphical abstract

14 pages, 3687 KiB  
Article
Bone Laser Patterning to Decipher Cell Organization
by Nicolas Touya, Samy Al-Bourgol, Théo Désigaux, Olivia Kérourédan, Laura Gemini, Rainer Kling and Raphaël Devillard
Bioengineering 2023, 10(2), 155; https://doi.org/10.3390/bioengineering10020155 - 24 Jan 2023
Viewed by 1894
Abstract
The laser patterning of implant materials for bone tissue engineering purposes has proven to be a promising technique for controlling cell properties such as adhesion or differentiation, resulting in enhanced osteointegration. However, the possibility of patterning the bone tissue side interface to generate [...] Read more.
The laser patterning of implant materials for bone tissue engineering purposes has proven to be a promising technique for controlling cell properties such as adhesion or differentiation, resulting in enhanced osteointegration. However, the possibility of patterning the bone tissue side interface to generate microstructure effects has never been investigated. In the present study, three different laser-generated patterns were machined on the bone surface with the aim of identifying the best surface morphology compatible with osteogenic-related cell recolonization. The laser-patterned bone tissue was characterized by scanning electron microscopy and confocal microscopy in order to obtain a comprehensive picture of the bone surface morphology. The cortical bone patterning impact on cell compatibility and cytoskeleton rearrangement on the patterned surfaces was assessed using Stromal Cells from the Apical Papilla (SCAPs). The results indicated that laser machining had no detrimental effect on consecutively seeded cell metabolism. Orientation assays revealed that patterns with larger hatch distances were correlated with higher cell cytoskeletal conformation to the laser-machined patterns. To the best of our knowledge, this study is the first to consider and evaluate bone as a biological interface that can be engineered for improvement. Further investigations should focus on the in vivo implications of this direct patterning. Full article
Show Figures

Figure 1

16 pages, 8893 KiB  
Article
Detection of Bacteria-Induced Early-Stage Dental Caries Using Three-Dimensional Mid-Infrared Thermophotonic Imaging
by Robert Welch, Koneswaran Sivagurunathan, Pantea Tavakolian, Kimberly Ngai, Bo Huang, Stephen Abrams, Yoav Finer and Andreas Mandelis
Bioengineering 2023, 10(1), 112; https://doi.org/10.3390/bioengineering10010112 - 12 Jan 2023
Cited by 3 | Viewed by 2793
Abstract
Tooth decay, or dental caries, is a widespread and costly disease that is reversible when detected early in its formation. Current dental caries diagnostic methods including X-ray imaging and intraoral examination lack the sensitivity and specificity required to routinely detect caries early in [...] Read more.
Tooth decay, or dental caries, is a widespread and costly disease that is reversible when detected early in its formation. Current dental caries diagnostic methods including X-ray imaging and intraoral examination lack the sensitivity and specificity required to routinely detect caries early in its formation. Thermophotonic imaging presents itself as a highly sensitive and non-ionizing solution, making it suitable for the frequent monitoring of caries progression. Here, we utilized a treatment protocol to produce bacteria-induced caries lesions. The lesions were imaged using two related three-dimensional photothermal imaging modalities: truncated correlation photothermal coherence tomography (TC-PCT) and its enhanced modification eTC-PCT. In addition, micro-computed tomography (μ-CT) and visual inspection by a clinical dentist were used to validate and quantify the severities of the lesions. The observational findings demonstrate the high sensitivity and depth profiling capabilities of the thermophotonic modalities, showcasing their potential use as a non-ionizing clinical tool for the early detection of dental caries. Full article
Show Figures

Figure 1

17 pages, 4256 KiB  
Article
Reconstruction of Soft Biological Tissues Using Laser Soldering Technology with Temperature Control and Biopolymer Nanocomposites
by Alexander Yu. Gerasimenko, Elena A. Morozova, Dmitry I. Ryabkin, Alexey Fayzullin, Svetlana V. Tarasenko, Victoria V. Molodykh, Evgeny S. Pyankov, Mikhail S. Savelyev, Elena A. Sorokina, Alexander Y. Rogalsky, Anatoly Shekhter and Dmitry V. Telyshev
Bioengineering 2022, 9(6), 238; https://doi.org/10.3390/bioengineering9060238 - 29 May 2022
Cited by 15 | Viewed by 5681
Abstract
Laser soldering is a current biophotonic technique for the surgical recovery of the integrity of soft tissues. This technology involves the use of a device providing laser exposure to the cut edges of the wound with a solder applied. The proposed solder consisted [...] Read more.
Laser soldering is a current biophotonic technique for the surgical recovery of the integrity of soft tissues. This technology involves the use of a device providing laser exposure to the cut edges of the wound with a solder applied. The proposed solder consisted of an aqueous dispersion of biopolymer albumin (25 wt.%), single-walled carbon nanotubes (0.1 wt.%) and exogenous indocyanine green chromophore (0.1 wt.%). Under laser exposure, the dispersion transforms into a nanocomposite due to the absorption of radiation and its conversion into heat. The nanocomposite is a frame structure of carbon nanotubes in a biopolymer matrix, which provides adhesion of the wound edges and the formation of a strong laser weld. A new laser device based on a diode laser (808 nm) has been developed to implement the method. The device has a temperature feedback system based on a bolometric infrared matrix sensor. The system determines the hottest area of the laser weld and adjusts the current supplied to the diode laser to maintain the preset laser heating temperature. The laser soldering technology made it possible to heal linear defects (cuts) in the skin of laboratory animals (rabbits) without the formation of a fibrotic scar compared to the control (suture material). The combined use of a biopolymer nanocomposite solder and a laser device made it possible to achieve a tensile strength of the laser welds of 4 ± 0.4 MPa. The results of the experiment demonstrated that the addition of single-walled carbon nanotubes to the solder composition leads to an increase in the ultimate tensile strength of the laser welds by 80%. The analysis of regenerative and morphological features in the early stages (1–3 days) after surgery revealed small wound gaps, a decrease in inflammation, the absence of microcirculatory disorders and an earlier epithelization of laser welds compared to the control. On the 10th day after the surgical operation, the laser weld was characterized by a thin cosmetic scar and a continuous epidermis covering the defect. An immunohistochemical analysis proved the absence of myofibroblasts in the area of the laser welds. Full article
Show Figures

Figure 1

Review

Jump to: Research, Other

14 pages, 305 KiB  
Review
Nanomaterials in Scaffolds for Periodontal Tissue Engineering: Frontiers and Prospects
by Siyang Chen and Xin Huang
Bioengineering 2022, 9(9), 431; https://doi.org/10.3390/bioengineering9090431 - 1 Sep 2022
Cited by 8 | Viewed by 3799
Abstract
The regeneration of periodontium represents important challenges to controlling infection and achieving functional regeneration. It has been recognized that tissue engineering plays a vital role in the treatment of periodontal defects, profiting from scaffolds that create the right microenvironment and deliver signaling molecules. [...] Read more.
The regeneration of periodontium represents important challenges to controlling infection and achieving functional regeneration. It has been recognized that tissue engineering plays a vital role in the treatment of periodontal defects, profiting from scaffolds that create the right microenvironment and deliver signaling molecules. Attributable to the excellent physicochemical and antibacterial properties, nanomaterials show great potential in stimulating tissue regeneration in tissue engineering. This article reviewed the up-to-date development of nanomaterials in scaffolds for periodontal tissue engineering. The paper also represented the merits and defects of different materials, among which the biocompatibility, antibacterial properties, and regeneration ability were discussed in detail. To optimize the project of choosing materials and furthermore lay the foundation for constructing a series of periodontal tissue engineering scaffolds, various nanomaterials and their applications in periodontal regeneration were introduced. Full article
Show Figures

Graphical abstract

Other

Jump to: Research, Review

23 pages, 3620 KiB  
Systematic Review
In Vivo Application of Silica-Derived Inks for Bone Tissue Engineering: A 10-Year Systematic Review
by Nicolas Touya, Ayako Washio, Chiaki Kitamura, Adrien Naveau, Yasuhiko Tabata, Raphaël Devillard and Olivia Kérourédan
Bioengineering 2022, 9(8), 388; https://doi.org/10.3390/bioengineering9080388 - 15 Aug 2022
Cited by 2 | Viewed by 3484
Abstract
As the need for efficient, sustainable, customizable, handy and affordable substitute materials for bone repair is critical, this systematic review aimed to assess the use and outcomes of silica-derived inks to promote in vivo bone regeneration. An algorithmic selection of articles was performed [...] Read more.
As the need for efficient, sustainable, customizable, handy and affordable substitute materials for bone repair is critical, this systematic review aimed to assess the use and outcomes of silica-derived inks to promote in vivo bone regeneration. An algorithmic selection of articles was performed following the PRISMA guidelines and PICO method. After the initial selection, 51 articles were included. Silicon in ink formulations was mostly found to be in either the native material, but associated with a secondary role, or to be a crucial additive element used to dope an existing material. The inks and materials presented here were essentially extrusion-based 3D-printed (80%), and, overall, the most investigated animal model was the rabbit (65%) with a femoral defect (51%). Quality (ARRIVE 2.0) and risk of bias (SYRCLE) assessments outlined that although a large majority of ARRIVE items were “reported”, most risks of bias were left “unclear” due to a lack of precise information. Almost all studies, despite a broad range of strategies and formulations, reported their silica-derived material to improve bone regeneration. The rising number of publications over the past few years highlights Si as a leverage element for bone tissue engineering to closely consider in the future. Full article
Show Figures

Figure 1

Back to TopTop