You are currently viewing a new version of our website. To view the old version click .

Model Predictive Control: Advances in Sensor Technologies and Applications

Special Issue Information

Dear Colleagues,

The synergy between model predictive control (MPC) and evolving sensor technologies represents a new era of intelligent control. This Special Issue, “Model Predictive Control: Advances in Sensor Technologies and Applications”, explores the multi-faceted relationship between these two fields.

The depth of sensor feedback loops, revealing the crucial role of sensors in MPC, highlights their integral function in feedback control. The fusion of different sensor data provides a broader perspective on MPC and enriches decision-making processes. In the era of data overload, techniques to control inconsistent or unreliable sensor data are becoming increasingly important in MPC. Moreover, the real-time applicability of MPC, when tested via the integration of wireless sensor networks, is both a challenge and a breakthrough. The introduction of soft sensors that can either complement or potentially replace traditional hardware is exciting. Finally, the transformative impact of self-calibrating sensors that redefine the adaptability of MPC is being explored.

This Special Issue aims to shed light on these intersections and foster a deeper understanding of this transformative technology. The authors' insights, research and innovations are invaluable to this discourse.

You may choose our Joint Special Issue in Sensors.

Yours sincerely,
Dr. Simon Tomažič
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 250 words) can be sent to the Editorial Office for assessment.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Automation is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 1200 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • model predictive control (MPC)
  • neural network control system
  • evolving control
  • nonlinear control
  • advanced process control
  • adaptive control
  • dynamic matrix control
  • intelligent soft sensor
  • fuzzy logic control
  • self-calibrating sensor

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • e-Book format: Special Issues with more than 10 articles can be published as dedicated e-books, ensuring wide and rapid dissemination.

Published Papers

Get Alerted

Add your email address to receive forthcoming issues of this journal.

XFacebookLinkedIn
Automation - ISSN 2673-4052