Special Issue "Harmful Cyanobacteria and Their Metabolites"

A special issue of Applied Sciences (ISSN 2076-3417). This special issue belongs to the section "Applied Biosciences and Bioengineering".

Deadline for manuscript submissions: 20 November 2020.

Special Issue Editors

Dr. Jussi Meriluoto
Website
Guest Editor
Biochemistry, Faculty of Science and Engineering, Åbo Akademi University, Turku, Finland
Interests: toxic and bioactive compounds of cyanobacteria; chemical analysis; transfer of cyanotoxins in food webs
Special Issues and Collections in MDPI journals
Dr. Nada Tokodi
Website
Guest Editor
Department of Biology and Ecology, Faculty of Sciences, University of Novi Sad, Novi Sad, Serbia
Interests: cyanobacteria; blooms; cyanotoxins; microcystin; health
Special Issues and Collections in MDPI journals

Special Issue Information

Dear Colleagues,

The ongoing eutrophication of aquatic ecosystems has increased cyanobacterial blooms and also intensified the problems caused by the blooms. Harmful cyanobacteria and their toxic metabolites are known to cause health concerns in humans, animals, and plants, and water-users continue to experience cyanobacterial hazards and nuisance in Europe and other parts of the world as evidenced by some recent events.

The Special Issue "Harmful Cyanobacteria and Their Metabolites" in the journal Applied Sciences has a wide scope and it is intended to address some of the gaps in our knowledge concerning the management of cyanobacterial problems. It deals with, e.g., the occurrence of harmful cyanobacteria, methods for the analysis of noxious cyanometabolites, fate/impact/health effects of cyanotoxins, as well as management measures related to harmful cyanobacteria.

Some examples of work relevant for the Special Issue includes manuscripts on toxic invasive cyanobacteria; occurrence of toxic cyanobacteria in less-studied environments; cyanobacterial adaptations to climate change especially in relation to toxin production; cyanobacterial production of taste and odor compounds; management of harmful cyanobacteria in protected ecosystems; exposure assessment and effects of cyanotoxins in aquatic and terrestrial organisms including humans; novel methods for monitoring and analysis of cyanotoxins; prevention and control measures for the elimination of cyanobacterial problems. Review papers promoting international initiatives for the management of cyanobacterial problems may also be considered if presented with a strong scientific rationale but the potential authors of such papers are encouraged to contact the Guest Editors in advance.

Dr. Jussi Meriluoto
Dr. Nada Tokodi
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All papers will be peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Applied Sciences is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 1800 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • Toxic invasive cyanobacteria
  • Ecotoxicology related to toxic cyanobacteria
  • Health effects of cyanotoxins
  • Taste and odor compounds of cyanobacteria
  • Methods for monitoring and analysis of harmful cyanobacteria and their metabolites
  • Prevention and control measures for the elimination of cyanobacterial problems, and international initiatives related to these

Published Papers (3 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

Open AccessArticle
Presence of Cyanotoxins in a Mexican Subtropical Monomictic Crater Lake
Appl. Sci. 2020, 10(19), 6719; https://doi.org/10.3390/app10196719 - 25 Sep 2020
Abstract
Microcystins (MCs) produced by cyanobacteria are a ubiquitous worldwide problem because some MCs can cause tumor formation and are hepatotoxic. In the Santa María del Oro crater lake, Mexico, plankton scums are recurrent during most of the year and are associated with cyanobacteria [...] Read more.
Microcystins (MCs) produced by cyanobacteria are a ubiquitous worldwide problem because some MCs can cause tumor formation and are hepatotoxic. In the Santa María del Oro crater lake, Mexico, plankton scums are recurrent during most of the year and are associated with cyanobacteria of the genera Microcystis spp. and Lyngbya spp. As some of these species are associated with the production of MCs and paralytic shellfish toxins (PSTs), samples from these scums and particulate matter were collected and analyzed for the main bloom species and toxins by a ultrahigh performance liquid chromatography coupled to tandem mass spectrometry (UHPLC-MS/MS) and high performance liquid chromatography with fluorescence detection (HPLC-FLD). Results showed that the main bloom-forming species were Limnoraphis robusta and Microcystis aeruginosa, the presence of at least seven MC congeners and the absence of PSTs in the algae scums. The MCs identified were MC-WR, MC-LR, MC-LA, MC-HilR, MC-LF, MC-YR, and MC-LY. On a dry mass weight basis, MC concentrations were low and ranged between 0.15 and 6.84 μg/kg. Toxin profiles were dominated by MC-WR, MC-LR, and MC-LA, representing 94.5% of the total sample, with each analog contributing 39.8%, 38.1% and 16.5% by relative concentration, respectively. Two of the more hazardous congeners, MC-LR and MC-LA, represented 54.6% of the total MC concentration. MCs in particulate matter along the depth profile were not detected. The MC profile is linked to M. aeruginosa, and it represents the first quantitative MC congener description for this species from a Mexican water ecosystem. Since these mats are recurrent yearly, their effects on humans and wild fauna, and the possible role of anthropogenic activities that favor their presence and proliferation, need to be evaluated. Full article
(This article belongs to the Special Issue Harmful Cyanobacteria and Their Metabolites)
Show Figures

Figure 1

Open AccessFeature PaperArticle
Different Gene Expression Response of Polish and Australian Raphidiopsis raciborskii Strains to the Chill/Light Stress
Appl. Sci. 2020, 10(16), 5437; https://doi.org/10.3390/app10165437 - 06 Aug 2020
Abstract
R. raciborskii is known for growing under wide ranges of temperature and light. In temperate regions, however, low temperature and high light may serve as a stressful condition for invading tropical populations. The genetic basis of R. raciborskii’s adaptation to this combination of [...] Read more.
R. raciborskii is known for growing under wide ranges of temperature and light. In temperate regions, however, low temperature and high light may serve as a stressful condition for invading tropical populations. The genetic basis of R. raciborskii’s adaptation to this combination of stresses are unknown. In this study, the growth rate and the expression of genes that may be crucial in the response to the chill/light stress of two R. raciborskii strains (differing in their climatic origin and toxicity) exposed to low temperature and high light were examined. Results showed that AMU-DH-30, a non CYN (cylindrospermopsin) producing strain isolated from the temperate region, exhibited under stress the upregulation of genes involved in the protein translation (rbp1, nusG, hflX), membrane fluidity (desA), photosynthetic activity (ccr2 and ftsH), and the accumulation of compatible solutes (asd). In contrast, a CYN producing Australian strain CS-505 was not able to adapt quickly and to continue growth during stress conditions. Intriguingly, CS-505 and AMU-DH-30 had a similar ability to resume growth when the stress conditions subsided. Moreover, in strain CS-505 the cyrB gene was significantly upregulated under the stress conditions. The presented results shed new light on the possible mechanisms involved in the response of R.raciborskii to chill/light stress. Full article
(This article belongs to the Special Issue Harmful Cyanobacteria and Their Metabolites)
Show Figures

Graphical abstract

Open AccessArticle
Free or Protein-Bound Microcystin Accumulation by Freshwater Bivalves as a Tool to Evaluate Water Contamination by Microcystin-Producing Cyanobacteria?
Appl. Sci. 2020, 10(10), 3426; https://doi.org/10.3390/app10103426 - 15 May 2020
Abstract
Cyanobacterial proliferations display rapid spatiotemporal variations that can interfere in the assessment of water contamination levels by microcystins (MC), and make necessary the use of integrative tools. This study evaluates the pertinence of bivalves Anodonta anatina and Dreissena polymorpha as bioindicators of the [...] Read more.
Cyanobacterial proliferations display rapid spatiotemporal variations that can interfere in the assessment of water contamination levels by microcystins (MC), and make necessary the use of integrative tools. This study evaluates the pertinence of bivalves Anodonta anatina and Dreissena polymorpha as bioindicators of the presence of MC-producing cyanobacteria in water. Ingested MC accumulates into two fractions in bivalve tissues—the cellular free and the protein-bound fractions—both forming the total MC fraction. Mussels were exposed to the cyanobacteria Planktothrix agardhii at densities producing an equivalent of 1, 10 and 100 µg/L of intracellular MC, with the evaluation of: (i) cyanobacterial cells and MC daily intake by mussels, (ii) free and total MC kinetics in whole individuals (using all the tissues) or only in the digestive gland, during and after the exposure, (iii) bioaccumulation factors. For each species, the kinetics of the two accumulation fractions were compared to evaluate which one best reflect levels and dynamics of MC-producing cyanobacteria in water. Results showed that the dynamic of free MC in bivalve tissues better highlight the dynamic of intracellular MC in water. Using whole D. polymorpha may be appropriate to reveal and discriminate the water contamination levels above densities of cyanobacteria producing 1 µg MC/L. Digestive glands of A. anatina appeared more sensitive to reveal low environmental concentration, but without direct correlation with levels of water contamination. Further experimentations in situ are necessary to confirm those results in order to propose the use of freshwater bivalves for a biomonitoring of MC-producing cyanobacteria in fresh waters. Full article
(This article belongs to the Special Issue Harmful Cyanobacteria and Their Metabolites)
Show Figures

Figure 1

Back to TopTop