applsci-logo

Journal Browser

Journal Browser

Fifth Anniversary of 'Food Science and Technology' Section—Recent Advances in Food

A special issue of Applied Sciences (ISSN 2076-3417). This special issue belongs to the section "Food Science and Technology".

Deadline for manuscript submissions: 20 December 2025 | Viewed by 2042

Special Issue Editors


E-Mail Website
Guest Editor
Department of Food Biochemistry, Faculty of Food Science, University of Warmia and Mazury in Olsztyn, 10-726 Olsztyn-Kortowo, Poland
Interests: food proteins; mass spectrometry; chromatography; bioinformatics
Special Issues, Collections and Topics in MDPI journals

E-Mail Website
Guest Editor
Department of Human Sciences and Promoting of the Quality of Life, San Raffaele Telematic University Rome, Via Val Cannuta 247, 00166 Rome, Italy
Interests: chromatography food chemistry mass spectrometry food science and technology; food analysis;fatty acid analysis; lipid extraction; emerging food technologies; novel food; functional foods; innovative foods
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

Food safety and food security should be considered together. The primary responsibility of applied sciences is to ensure that the expanding global population is provided with food that is safe to eat, inhibits the development of lifestyle-related diseases, is free of chemical additives, and in sufficient quantities to provide nourishment for all. We believe that research on agriculture and food technology will ensure that food produced has high nutritional and health value while respecting the natural environment of Earth. Applied research could lead to the inception of new technologies that are more economical and environmentally friendly and produce healthy and safe food in the right quantity and quality. This should be accompanied by comprehensive preschool and school education about healthy nutrition, preventing food waste, and protecting the environment.

Proteins belong to the most important food components. They affect physico-chemical and functional properties of food products and are precursors of biologically active and taste-affecting peptides. Some proteins possess also dark sides—allergenicity. Enzymatic and chemical reactions of proteins and peptides during processing also constitute important a research approach. Bioinformatics and cheminformatics have become significant parts of protocols and workflows in food science. They are usually applied to support experiments on all classes of food components.

This year marks the fifth year since the inception of the “Food Science and Technology” Section. To celebrate this achievement, for this Special Issue, we seek high-quality submissions that highlight emerging and innovative technologies and applications that address recent advances and breakthroughs in the fields of food quality and safety, food components and nutrition, (bio)chemical characterization, etc.

Prof. Dr. Piotr Minkiewicz
Dr. Roberta Foligni
Prof. Dr. Wojciech Kolanowski
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Applied Sciences is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2400 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • food safety
  • food security
  • food technology
  • lifestyle-related diseases
  • healthy diet
  • proteins
  • bioactive peptides
  • functional properties
  • proteolysis
  • chemical modifications enzymatic modifications
  • allergy
  • bioinformatics
  • cheminformatics
  • chemical information

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • Reprint: MDPI Books provides the opportunity to republish successful Special Issues in book format, both online and in print.

Further information on MDPI's Special Issue policies can be found here.

Published Papers (4 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

23 pages, 1486 KiB  
Article
Valorisation of Waste Oils Through Oleaginous Yarrowia lipolytica Yeast: Insights into Lipid Stability and Nutritive Properties of Lipid-Rich Biomass
by Agata Urszula Fabiszewska, Joanna Kobus, Magdalena Górnicka, Aleksandra Piotrowicz, Iga Piasecka and Dorota Nowak
Appl. Sci. 2025, 15(12), 6796; https://doi.org/10.3390/app15126796 - 17 Jun 2025
Viewed by 278
Abstract
This study investigated the potential of Yarrowia lipolytica, an oleaginous yeast, for producing lipid-rich biomass and its application in food technology. According to EFSA guidelines, lipid-rich biomass is recognized as a novel food with potential nutritional and technological value. However, cost-effective and [...] Read more.
This study investigated the potential of Yarrowia lipolytica, an oleaginous yeast, for producing lipid-rich biomass and its application in food technology. According to EFSA guidelines, lipid-rich biomass is recognized as a novel food with potential nutritional and technological value. However, cost-effective and scalable production of such biomass remains a challenge. The yeast was cultured in a nitrogen-limited medium using a cost-containment strategy based on the use of waste carbon sources, such as post-frying oil and untreated tap water. The composed batch culture approach studied in the experiments presented an example that reduces the cost of yeast biomass biosynthesis. This research aimed to characterize the biomass to assess its nutritional quality and suitability for food applications. Cultures were conducted in a laboratory bioreactor with a working volume of 4 litres. Key kinetic parameters were determined, including biomass yield (X), maximum lipid concentration (Lmax), lipid yield, protein yield relative to substrate and the specific rate of lipid synthesis or protein content and other cellular components. The biomass of Y. lipolytica demonstrated a high lipid content (39.43–50.53%), with significant levels of protein (24.16–27.03%) and unsaturated fatty acids, including oleic acid (62.73–66.44%) and linoleic acid (19.40–21.40%). Lipid-rich biomass produced in cultures with shorter times (20 h), which ended in the logarithmic growth phase, exhibited lower oxidative stability than longer cultures (65 h), which ended in the stationary growth phase. The results of this study highlighted that waste carbon sources and untreated tap water did not significantly impact the biomass yield or the nutritional profile, but did affect the stability of the produced oil. The biomass of Y. lipolytica, containing over 20% lipids, could serve as a promising raw material for food technology, providing a sustainable alternative to traditional vegetable oils. This work makes an important contribution to the development of alternative lipid sources by integrating waste processing in bioreactor-scale culture and kinetic modelling. Full article
Show Figures

Figure 1

16 pages, 767 KiB  
Article
Male Layer-Type Birds (Lohmann Brown Classic Hybrid) as a Meat Source for Chicken Pâtés
by Nikolay Kolev, Desislav Balev, Stefan Dragoev, Teodora Popova, Evgeni Petkov, Krasimir Dimov, Surendranath Suman, Ana Paula Salim and Desislava Vlahova-Vangelova
Appl. Sci. 2025, 15(12), 6702; https://doi.org/10.3390/app15126702 - 14 Jun 2025
Viewed by 310
Abstract
The valorisation of underutilized male layer-type chickens offers a sustainable and ethically aligned opportunity for the poultry industry. This study evaluated the feasibility of male layer-type chicken meat in the production of chicken pâtés and compared the effects of different meat sources—commercial broiler [...] Read more.
The valorisation of underutilized male layer-type chickens offers a sustainable and ethically aligned opportunity for the poultry industry. This study evaluated the feasibility of male layer-type chicken meat in the production of chicken pâtés and compared the effects of different meat sources—commercial broiler (CP), and 5 (5wP) and 9-week-old (9wP) male layer-type chickens—on product quality during refrigerated storage using the general linear model with the Tukey–Kramer post-hoc test. Pâtés made from 5wP meat exhibited the most favourable technological properties, including the lowest (p < 0.05) total expressible fluid (TEF), highest (p < 0.05) water retention (TEFWater), and lowest (p < 0.05) fat content (TEFFat) than CP and 9wP indicating superior emulsion stability. The 5wP pâtés also presented the lowest (p < 0.05) TBARS values on day 1, along with reduced colour deterioration (ΔE) over 7 days of storage. CP samples demonstrated the greatest (p < 0.05) hardness, cohesiveness, and gumminess, but lower (p < 0.05) springiness and resilience compared to 5wP and 9wP, yielding softer and elastic pâtés. Overall, pâtés formulated with 5wP can be a promising option for the development of value-added poultry products. The incorporation of male layer-type chicken meat into commercial formulations will encourage further research of their market potential. Full article
Show Figures

Figure 1

22 pages, 1179 KiB  
Article
Pressurized Cyclic Solid–Liquid (PCSL) Extraction of Sea Buckthorn Leaves for Microbiologically Safe, Value-Added Kombucha Production
by Jolita Jagelavičiūtė, Juozas Girtas, Ingrida Mažeikienė, Antanas Šarkinas and Karolina Almonaitytė
Appl. Sci. 2025, 15(12), 6608; https://doi.org/10.3390/app15126608 - 12 Jun 2025
Viewed by 276
Abstract
Sea buckthorn (Hippophae rhamnoides) is a valuable plant rich in biologically active compounds, mainly found in its berries and leaves. The harvesting process, which includes pruning, freezing, and shaking, leaves behind large amounts of biomass and juice-pressing residues, typically composted. The [...] Read more.
Sea buckthorn (Hippophae rhamnoides) is a valuable plant rich in biologically active compounds, mainly found in its berries and leaves. The harvesting process, which includes pruning, freezing, and shaking, leaves behind large amounts of biomass and juice-pressing residues, typically composted. The aim of this study is to expand knowledge of the valorization of sea buckthorn secondary raw materials by applying an innovative pressure cyclic solid–liquid (PCSL) extraction method and to develop value-added functional food products. Extraction was performed in 20 and 60 cycles, each lasting from 2 to 10 min. The highest concentrations of proanthocyanidins (5.51 gCE/L) and total phenolics (12.42 gGAE/L) were obtained under prolonged conditions, but the L-4 extract (20 cycles × 2 min) was selected for kombucha production due to its favorable balance between efficiency and sustainability. Microbial safety evaluation showed that kombucha with sea buckthorn leaf extract exhibited significantly stronger antimicrobial activity against tested pathogens compared to green tea kombucha. Additionally, sensory analysis revealed higher consumer acceptability of beverages enriched with sea buckthorn extracts. Shotgun metagenomic analysis identified high microbial diversity in the M. gisevii MI-2 starter culture and fermented kombucha products (227 bacteria and 44 eukaryotes), most of which (92.5% bacteria, 77.8% eukaryotes) remain viable and contribute to fermentation dynamics. New biotechnological strategies and genetic modifications raise concerns about the safe use of microorganisms in food production. To address these issues, these findings provide a foundation for future strategies aimed at the safe application of beneficial microorganisms in food biotechnology and support the long-term goals of the European Green Deal by promoting sustainable biomass valorization and circular economy advancement in the food sector. Full article
Show Figures

Figure 1

21 pages, 1763 KiB  
Article
Gluten-Free Sourdough Based on Quinoa and Sorghum: Characterization and Applications in Breadmaking
by Anca Lupu, Iuliana Banu, Leontina Grigore-Gurgu, Ina Vasilean and Iuliana Aprodu
Appl. Sci. 2025, 15(10), 5468; https://doi.org/10.3390/app15105468 - 13 May 2025
Viewed by 548
Abstract
Gluten-free flour blends, consisting of quinoa and sorghum flours, were used in the present study to prepare sourdough samples, which were characterized in terms of physical–chemical properties, the thermo-mechanical behavior of dough and bread making performance. The quinoa–sorghum flour blends (100:0, 75:25, 50:50) [...] Read more.
Gluten-free flour blends, consisting of quinoa and sorghum flours, were used in the present study to prepare sourdough samples, which were characterized in terms of physical–chemical properties, the thermo-mechanical behavior of dough and bread making performance. The quinoa–sorghum flour blends (100:0, 75:25, 50:50) were fermented using two different starter cultures, consisting of Lacticaseibacillus rhamnosus, Levilactobacillus brevis and Lactiplantibacillus plantarum (SC1), and Lactobacillus acidophilus, Bifidobacterium lactis and Streptococcus thermophilus (SC2). After 20 h of fermentation at 30 °C, the acidity of the sourdoughs prepared with SC1 and SC2 was significantly higher in respect to the corresponding spontaneously fermented sample. The use of the starter culture for sourdough fermentation resulted in sourdoughs with higher glycerol and lactic acid contents, and lower ethanol and acetic acid. The empirical rheological measurements indicated that the behavior of the proteins and starch within the complex dough matrix, during mixing and heating, is influenced by both sorghum level and starter culture type. The use of the sourdough allowed the preparation of gluten-free breads with good texture and high contents of bioactive compounds. In conclusion, sourdough fermentation can be successfully used for boosting the quality of the gluten-free bread products. Full article
Show Figures

Figure 1

Back to TopTop