Special Issue "Effects of Agricultural Management on Soil Properties and Health"

A special issue of Agronomy (ISSN 2073-4395). This special issue belongs to the section "Soil and Plant Nutrition".

Deadline for manuscript submissions: 25 November 2020.

Special Issue Editor

Dr. Lisa Lobry de Bruyn
Website
Guest Editor
School of Environmental and Rural Science, University of New England, Armidale, 2351 NSW, Australia
Interests: soil biota; ants; soil function; local soil knowledge; soil carbon management; soil monitoring; soil health; sustainable livelihoods; landholder pereception of environmental change; sustainable soil management; soil governance; farmer adoption

Special Issue Information

Dear Colleagues,

The International Year of Plant Health is 2020, and this Special Issue is taking a broad focus on the effects of agricultural management on soil properties and health for a sustainable and productive agricultural landscape. This Special Issue contributes to the wider agenda of SDGs[i].  Increasingly, sustainable soil management, and along with it plant health, is being threatened by a continued decline in the amount of arable land through deteriorating soil health or land-use change. Farmers and land managers around the world need practical and adoptable measures to improve this situation, and in ways they can largely control, such as good agricultural practices, monitoring soil properties and health, and system transformation. A number of studies into farmers’ practice suggest that their management of soil is influenced by observable features, and often, they are more focused on above-ground changes in plant growth and vigour than below-ground changes in soil properties, although they do appreciate that the two are strongly related and dependent on each other.  In science, the examination of “best practice” for soil conservation, and improvements in soil health, have largely occurred in experimental and highly controlled situations. To fully understand the mechanisms of change, and to understand how the farming system can be managed sustainably, the unpredictable nature of a farmer’s field is often avoided in research. Nevertheless, farmers need to know the consequences of applying specific or groups of agricultural management practices on plant and soil health outcomes, and on the whole agricultural system. This Special Issue welcomes researchers from a wide disciplinary background to share their research into the effects of agricultural management on soil properties and health, and on the wider ramifications for a productive and sustainable agricultural landscape in an increasingly changing and disrupted world.

[i] 01. End poverty in all its forms everywhere; 02. End hunger, achieve food security and improved nutrition and promote sustainable agriculture; 08. Promote sustained, inclusive and sustainable economic growth, full and productive employment and decent work for all; 12. Ensure sustainable consumption and production patterns; 13. Take urgent action to combat climate change and its impacts; 15. Protect, restore and promote sustainable use of terrestrial ecosystems, sustainably manage forests, combat desertification, and halt and reverse land degradation and halt biodiversity loss; 17. Strengthen the means of implementation and revitalize the global partnership for sustainable development

Dr. Lisa Lobry de Bruyn
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All papers will be peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Agronomy is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 1600 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • sustainability
  • SDG
  • soil health
  • plant health
  • farmers perception
  • good agricultural practices
  • soil conservation
  • minimum tillage
  • regenerative agriculture
  • conservation agriculture
  • farmer adoption
  • soil carbon management

Published Papers (7 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

Jump to: Review

Open AccessArticle
Comparison of the Effects of Different Crop Production Systems on Soil Physico-Chemical Properties and Microbial Activity under Winter Wheat
Agronomy 2020, 10(8), 1130; https://doi.org/10.3390/agronomy10081130 - 03 Aug 2020
Abstract
In many areas, organic crop production systems have been shown to contribute to maintaining good soil condition. The organic production system has been recommended as an alternative to conventional agriculture. However, in order to recommend this practice in new regions, it is necessary [...] Read more.
In many areas, organic crop production systems have been shown to contribute to maintaining good soil condition. The organic production system has been recommended as an alternative to conventional agriculture. However, in order to recommend this practice in new regions, it is necessary to obtain information about its effects and consequences in local environmental conditions. The research was completed during 2016–2018 in Osiny (Lublin region, Poland) on a field experiment established 26 years previously in a Haplic Luvisol soil. The research was aimed at comparing the effects of long-term use of tilled soil with organic (ORG) and conventional (CON) crop production systems with those in non-tilled soil under permanent grass (PRG) as a control. This comparison was done on the basis of changes in the values of soil properties as follows: Total porosity (TP), total organic matter (OM), particulate organic matter (POM), humic substances (HS), water-extractable carbon (WEC), microbial biomass carbon pool (MBC) and dehydrogenase activity (DH). Soil samples were collected from experimental fields (each treatment 1 ha) under winter wheat and permanent grass each year from 0–5, 5–10, 15–20 and 30–35 cm depths. Over the three year study period, it was found that permanent grass and the organic crop production system contributed to increased soil OM, POM, HS, WEC and MBC contents and DH activity compared to the CON system, especially in the top soil layer, 0–5 cm. To obtain a clearer picture of soil quality change our study examined for the first time the metabolic potential index (MPI) as a ratio of dehydrogenase activity to the soluble organic carbon content. The MPI values confirmed the increase of metabolism in ORG soil as a consequence of management practices compared with CON soil. The obtained correlations showed strong mutual relationships within properties of the heterogeneous soil complex. The results show the positive effects of the ORG management system causing soil condition improvement which is based on organic fertilization, enriching the soil with a large amount of plant residues in creating positive changes in the soil quality in contrast to the CON system. Full article
(This article belongs to the Special Issue Effects of Agricultural Management on Soil Properties and Health)
Show Figures

Figure 1

Open AccessArticle
Effects of Rice Husk Biochar on Carbon Release and Nutrient Availability in Three Cultivation Age of Greenhouse Soils
Agronomy 2020, 10(7), 990; https://doi.org/10.3390/agronomy10070990 - 10 Jul 2020
Abstract
Greenhouse production can contribute to the accumulation of salt and heavy metals and nutrient imbalance, thus, increasingly degrading greenhouse soils. The potential of rice husk biochar to increase carbon sequestration, neutralize soil pH, increase nutrient retention, and change nutrient/heavy metal sorption/desorption in greenhouse [...] Read more.
Greenhouse production can contribute to the accumulation of salt and heavy metals and nutrient imbalance, thus, increasingly degrading greenhouse soils. The potential of rice husk biochar to increase carbon sequestration, neutralize soil pH, increase nutrient retention, and change nutrient/heavy metal sorption/desorption in greenhouse soils is promising. Therefore, we investigated three greenhouse soils (red soil) with 3, 14, and 24 cultivation years (3S, 14S, and 24S) in northern Taiwan to test the effects of rice husk biochar (RHB) on carbon dynamics and nutrient availability. A 100-day incubation study was conducted in which poultry-livestock manure compost (2% by wt.) and six rice-husk-based, slow-pyrolysis biochars pyrolyzed at different temperatures were applied (0%, 0.5%, 1.0%, 4.0%, 10%, and 20% by wt.) to three red soils. The study results indicated that the RHB pyrolyzed at high temperatures, with relatively high pH and Ca content, could lead to a higher neutralizing effect when applied to the soil. In addition, the high temperatures pyrolyzed RHB had a higher capacity to reduce the concentration of Cu, Pb, and Zn in the three soils, especially for the younger cultivation soil, which contributed to the higher pH and relatively high surface area of these RHB, and the relative lower soil pH of the younger soil. Furthermore, only adding 0.5% RHB could result in an evident change in soil characteristics for 3S and 24S soil, including cumulative C release, pH, EC, TC, and available K increase, but 4% RHB addition was needed for 14S soil. In the condition of co-application with 2% compost (by wt.), 4% RHB addition was necessary for carbon sequestration, at least 10% RHB addition was needed for 3S and 14S soil, but 1.0 to 4.0% would be sufficient for 24S. In conclusion, the RHB and compost co-application in greenhouse soil resulted in improved chemical properties, and the effect of the pyrolysis temperature, application rate, and cultivation age had varying improvements. Full article
(This article belongs to the Special Issue Effects of Agricultural Management on Soil Properties and Health)
Show Figures

Graphical abstract

Open AccessArticle
Temporal Change of Soil Carbon on a Long-Term Experimental Site with Variable Crop Rotations and Tillage Systems
Agronomy 2020, 10(6), 840; https://doi.org/10.3390/agronomy10060840 - 12 Jun 2020
Cited by 1
Abstract
The impacts of tillage practices and crop rotations are fundamental factors influencing changes in the soil carbon, and thus the sustainability of agricultural systems. The objective of this study was to compare soil carbon status and temporal changes in topsoil from different 4 [...] Read more.
The impacts of tillage practices and crop rotations are fundamental factors influencing changes in the soil carbon, and thus the sustainability of agricultural systems. The objective of this study was to compare soil carbon status and temporal changes in topsoil from different 4 year rotations and tillage treatments (i.e., no-till and conventional tillage). Rotation systems were primarily corn and soy-based and included cereal and alfalfa phases along with red clover cover crops. In 2018, soil samples were collected from a silty-loam topsoil (0–15 cm) from the 36 year long-term experiment site in southern Ontario, Canada. Total carbon (TC) contents of each sample were determined in the laboratory using combustion methods and comparisons were made between treatments using current and archived samples (i.e., 20 year and 9 year change, respectively) for selected crop rotations. Overall, TC concentrations were significantly higher for no-till compared with conventional tillage practices, regardless of the crop rotations employed. With regard to crop rotation, the highest TC concentrations were recorded in corn–corn–oats–barley (CCOB) rotations with red clover cover crop in both cereal phases. TC contents were, in descending order, found in corn–corn–alfalfa–alfalfa (CCAA), corn–corn–soybean–winter wheat (CCSW) with 1 year of seeded red clover, and corn–corn–corn–corn (CCCC). The lowest TC concentrations were observed in the corn–corn–soybean–soybean (CCSS) and corn–corn–oats–barley (CCOB) rotations without use of cover crops, and corn–corn–soybean–winter wheat (CCSW). We found that (i) crop rotation varieties that include two consecutive years of soybean had consistently lower TC concentrations compared with the remaining rotations; (ii) TC for all the investigated plots (no-till and/or tilled) increased over the 9 year and 20 year period; (iii) the no-tilled CCOB rotation with 2 years of cover crop showed the highest increase of TC content over the 20 year change period time; and (iv) interestingly, the no-till continuous corn (CCCC) rotation had higher TC than the soybean–soybean–corn–corn (SSCC) and corn–corn–soybean–winter wheat (CCSW). We concluded that conservation tillage (i.e., no-till) and incorporation of a cover crop into crop rotations had a positive effect in the accumulation of TC topsoil concentrations and could be suitable management practices to promote soil fertility and sustainability in our agricultural soils. Full article
(This article belongs to the Special Issue Effects of Agricultural Management on Soil Properties and Health)
Show Figures

Figure 1

Open AccessArticle
Tillage, Crop Rotation and Crop Residue Management Effects on Nutrient Availability in a Sweet Sorghum-Based Cropping System in Marginal Soils of South Africa
Agronomy 2020, 10(6), 776; https://doi.org/10.3390/agronomy10060776 - 30 May 2020
Abstract
The low soil fertility status of South African marginal soils threatens sustainable production of biofuel feedstock in smallholder farmers. It is therefore imperative to development sustainable and optimal management practices that improve soil fertility. The objective of this study was to determine the [...] Read more.
The low soil fertility status of South African marginal soils threatens sustainable production of biofuel feedstock in smallholder farmers. It is therefore imperative to development sustainable and optimal management practices that improve soil fertility. The objective of this study was to determine the effect of tillage, rotation and crop residue management on nutrient availability in a bioenergy sweet sorghum-based cropping system in marginal soils. Two tillage levels, no-till (NT) and conventional tillage (CT); two crop rotations, sweet sorghum–grazing vetch–sweet sorghum (SVS) and sweet sorghum–fallow–sweet sorghum (SFS); and three crop residue retention levels, 0%, 15% and 30%, were tested. No-till enhanced total nitrogen, total organic nitrogen (TON), magnesium (Mg) and sodium (Na) by 3.19% to 45% compared to CT. SVS rotation increased ammonium (NH4+-N) and nitrate (NO3-N) by 3.42% to 5.98% compared to SFS. A 30% crop residue retention increased NH4+-N, NO3-N, available phosphorus (Available P), cation exchange capacity (CEC), calcium (Ca), Mg and potassium (K) by 3.58% to 31.94% compared to crop residue removal. In the short term, a 30% crop residue retention was the main treatment that enhanced soil fertility. The application of NT−30% was a better practice to enhance soil fertility. However, research on inclusion of crop diversity/intercropping can add more value to the NT–30% practice in enhancing soil fertility. Full article
(This article belongs to the Special Issue Effects of Agricultural Management on Soil Properties and Health)
Open AccessArticle
Long-Term Fertilization with Potassium Modifies Soil Biological Quality in K-Rich Soils
Agronomy 2020, 10(6), 771; https://doi.org/10.3390/agronomy10060771 - 28 May 2020
Abstract
Imbalanced fertilization without potassium (K) is a worldwide phenomenon in K-rich soils, but its long-term effects on soil quality are poorly understood. Here, in a wheat–fallow system with K-rich soil, soil nutrients and enzyme activities involved in C, N, P, and S cycling [...] Read more.
Imbalanced fertilization without potassium (K) is a worldwide phenomenon in K-rich soils, but its long-term effects on soil quality are poorly understood. Here, in a wheat–fallow system with K-rich soil, soil nutrients and enzyme activities involved in C, N, P, and S cycling and microbial community composition were studied in a 27-year field study with three treatments: no fertilizer (CK); mineral N and P fertilizer (NP); and mineral N, P, and K fertilizer (NPK). Results revealed that long-term NP and NPK fertilization significantly increased soil quality index (SQI) scores and wheat grain yield by mediating soil fertility, which was characterized by a significant decline in soil pH and increase in soil organic carbon (SOC), total N, available N (AN), available P (AP), enzymatic activities, and the abundance of total bacteria, fungi, and actinomycetes, when compared to CK. NP exhibited significantly higher SOC, AN, AP, microbial biomass C (MBC) and N (MBN), N-acetyl-glucosaminidase, total bacteria, and fungi values compared to NPK; the opposite was true for soil pH and available K. Notably, the differences in wheat grain yield were not statistically significant, while SQI scores in NP (0.86 ± 0.02) were appreciably higher than NPK (0.79 ± 0.03), which was attributed to the differences in MBC, MBN, and microbial communities. Redundancy analysis (RDA) indicated that SOC was the key variable affecting enzymatic activities and microbial community composition. The partial least squares path model (PLS-PM) revealed that fertilization-induced changes in SQI were primarily associated with soil microbiological properties (e.g., microbial community composition), while fertilization-driven increases in wheat grain yield were regulated by the soil nutrients. These results suggest that long-term NPK fertilization decreases soil biological quality in K-rich soils, and further studies are required to elucidate the underlying mechanisms by which K affects soil quality in agricultural systems. Full article
(This article belongs to the Special Issue Effects of Agricultural Management on Soil Properties and Health)
Show Figures

Figure 1

Open AccessArticle
Oxytetracycline and Monensin Uptake by Tifton 85 Bermudagrass from Dairy Manure-Applied Soil
Agronomy 2020, 10(4), 468; https://doi.org/10.3390/agronomy10040468 - 27 Mar 2020
Abstract
To address concerns regarding the potential impact of antibiotic use in animal husbandry on antibiotic resistance in humans, we conducted a greenhouse-based study examining uptake of the veterinary antibiotics oxytetracycline (OTC) and monensin (MON) by Tifton 85 Bermudagrass (T85), the most commonly grown [...] Read more.
To address concerns regarding the potential impact of antibiotic use in animal husbandry on antibiotic resistance in humans, we conducted a greenhouse-based study examining uptake of the veterinary antibiotics oxytetracycline (OTC) and monensin (MON) by Tifton 85 Bermudagrass (T85), the most commonly grown forage grass in the southeastern U.S.A. Since oxytetracycline is used in both veterinary and human medicine, its accumulation in animal products could impact human resistance to this antibiotic. Monensin is not used in human medicine but has a high potential for accumulating in the environment. Our research examined antibiotic uptake by forage grass T85, the effect of dairy manure application on its uptake, and antibiotic retention in soil. We compared unspiked, wet dairy manure to wet dairy manure spiked with MON or OTC that was soil surface applied to pots or incorporated into soil. After 6 wk, plant stem/leaf and root tissue, as well as soil samples, were assessed for antibiotic residues using enzyme-linked immunosorbent assay (ELISA). Results confirmed Tifton 85 MON and OTC uptake. Six weeks after adding the antibiotics, the greatest plant matter OTC and MON contents were 157.9 ± 70.6 and 234.4 ± 19.6 µg kg−1, respectively, and 17.6 and 369.5 µg kg−1, respectively, for soil. When spiked with OTC, manure incorporation led to decreased OTC uptake by T85 tissue. Bioaccumulation of these antimicrobials in livestock and in the environment is a potential concern for animal, environmental, and human health. Full article
(This article belongs to the Special Issue Effects of Agricultural Management on Soil Properties and Health)
Show Figures

Figure 1

Review

Jump to: Research

Open AccessReview
Soil Organic Carbon in Sandy Paddy Fields of Northeast Thailand: A Review
Agronomy 2020, 10(8), 1061; https://doi.org/10.3390/agronomy10081061 - 22 Jul 2020
Abstract
Soil organic carbon (SOC) improvement has become a sustainable strategy for enhancing soil resilience and reducing greenhouse gas (GHG) emissions in the rice cropping system. For tropical soils, the SOC accumulation was limited by the unfavorable environment, likely the sandy soil area in [...] Read more.
Soil organic carbon (SOC) improvement has become a sustainable strategy for enhancing soil resilience and reducing greenhouse gas (GHG) emissions in the rice cropping system. For tropical soils, the SOC accumulation was limited by the unfavorable environment, likely the sandy soil area in Northeast (NE) Thailand. This review aims to quantify and understand SOC in sandy paddy fields of NE Thailand. The existing research gap for alternative management practices is also highlighted to increase ecological and agronomic values. We review previous studies to determine the factors affecting SOC dynamics in sandy paddy fields, in order to enhance SOC and sustain rice yields. High sand content, up to 50% sand, was found in 70.7% of the observations. SOC content has ranged from 0.34 to 31.2 g kg−1 for the past four decades in paddy rice soil of NE Thailand. The conventional and alternative practice managements were chosen based on either increasing rice crop yield or improving soil fertility. The lack of irrigation water during the mild dry season would physically affect carbon sequestration as the soil erosion accelerates. Meanwhile, soil chemical and microbial activity, which directly affect SOC accumulation, would be influenced by nutrient and crop residue management, including chemical fertilizer, manure and green manure, unburned rice straw, and biochar application. Increasing SOC content by 1 g kg−1 can increase rice yield by 302 kg ha−1. The predicted carbon saturation varied tremendously, from 4.1% to 140.6% (52% in average), indicating that the sandy soil in this region has the potential for greater SOC sequestration. Our review also suggests that broadening the research of rice production influenced by sandy soil is still required to implement adaptive management for sustainable agriculture and future food security. Full article
(This article belongs to the Special Issue Effects of Agricultural Management on Soil Properties and Health)
Show Figures

Graphical abstract

Back to TopTop