Soil Properties after Eight Years of the Use of Strip-Till One-Pass Technology
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experiment Location
2.2. Design and Performance of the Experiment
- i.
- conventional tillage (CT)—shallow tillage after the previous crop harvest (5–6 cm), 20 cm deep plough, pre-sowing basic mineral fertilization all across the soil surface, seedbed preparation, sowing;
- ii.
- reduced tillage (RT)—tillage with the cultivator (5–6 cm deep) after the harvest of the previous crop, deep soil loosening without plough (20 cm), pre-sowing basic mineral fertilization all across the soil surface, seedbed preparation, sowing;
- iii.
- strip-till one-pass (ST-OP)—loosening the soil strips 12 cm wide by 20 cm deep, the application of mineral fertilisers on the strip of loosened soil, sowing the seeds in one pass of the machine.
2.3. Soil Samples and Measurements
- B—weight of the dish under the Eijkelkamp cylinder;
- C—Eijkelkamp cylinder weight;
- D—weight of the cylinder with soil and the dish after drying.
- -
- YPS with soil extract (incubation for 5 days at 26 °C) added to evaluate the total bacteria count;
- -
- Pochon medium with 100 μg mL−1 of nystatin added (incubation for 10 days at 27 °C) to evaluate Actinobacteria;
- -
- Martin medium with 30 μg mL−1 streptomycin added (incubation for 5 days at 25 °C) to evaluate filamentous fungi;
- -
- Congo selective medium, Red Agar with CMC-Na (0.1% carboxymethylcellulose sodium salt) to evaluate cellulolytic microorganisms.
2.4. Data Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Gomiero, T. Soil degradation, land scarcity and food security: Reviewing a complex challenge. Sustainability 2016, 8, 281. [Google Scholar] [CrossRef] [Green Version]
- Kanianska, R. Agriculture and Its Impact on Land-Use, Environment, and Ecosystem Services. In Landscape Ecology—The Influences of Land Use and Anthropogenic Impacts of Landscape Creation; IntechOpen: London, UK, 2016. [Google Scholar]
- Lal, R. Restoring soil quality to mitigate soil degradation. Sustainability 2015, 7, 5875–5895. [Google Scholar] [CrossRef] [Green Version]
- Gozubuyuk, Z.; Sahin, U.; Celik, A. Tillage and irrigation impacts on the efficiency of fossil Fuel utilization for Hungarian vetch production and fuel-related CO2 emissions. Environ. Eng. Sci. 2020, 37, 201–213. [Google Scholar] [CrossRef]
- Copec, K.; Filipovic, D.; Husnjak, S.; Kovacev, I.; Kosutic, S. Effects of tillage systems on soil water content and yield in maize and winter wheat production. Plant Soil Environ. 2015, 61, 213–219. [Google Scholar] [CrossRef] [Green Version]
- Kertesz, A.; Madarasz, B. Conservation agriculture in Europe. Int. Soil Water Conserv. Res. 2014, 2, 91–96. [Google Scholar] [CrossRef] [Green Version]
- Porwollik, V.; Rolinski, S.; Heinke, J.; Müller, C. Generating a rule-based global gridded tillage dataset. Earth Syst. Sci. 2019, 11, 823–843. [Google Scholar] [CrossRef] [Green Version]
- Boincean, B.; Dent, D. Tillage and Conservation Agriculture. In Farming the Black Earth; Springer: Cham, Switzerland, 2019. [Google Scholar]
- Page, K.L.; Dang, Y.P.; Dalal, R.C. The Ability of Conservation Agriculture to Conserve Soil Organic Carbon and the Subsequent Impact on Soil Physical, Chemical, and Biological Properties and Yield. Front. Sustain. Food Syst. 2020, 4, 31. [Google Scholar] [CrossRef] [Green Version]
- Song, K.; Zheng, X.; Lv, W.; Qin, Q.; Sun, L.; Zhang, L.; Xue, Y. Effects of tillage and straw return on water-stable aggregates, carbon stabilization and crop yield in an estuarine alluvial soil. Sci. Rep. 2019, 9, 4586. [Google Scholar] [CrossRef]
- Li, J.; Wang, Y.; Guo, Z.; Li, J.; Tian, C.; Hua, D.; Shi, C.; Wang, H.; Han, J.; Xu, Y. Effects of Conservation Tillage on Soil Physicochemical Properties and Crop Yield in an Arid Loess Plateau, China. Sci. Rep. 2020, 10, 4716. [Google Scholar] [CrossRef]
- Xomphoutheb, T.; Jiao, S.; Guo, X.; Mabagala, F.S.; Sui, B.; Wang, H.; Zhao, L.; Zhao, X. The effect of tillage systems on phosphorus distribution and forms in rhizosphere and non-rhizosphere soil under maize (Zea mays L.) in Northeast China. Sci. Rep. 2020, 10, 6574. [Google Scholar] [CrossRef] [Green Version]
- Morrison, J.E., Jr.; Sanabria, J. One-pass and two-pass spring strip tillage for conservation row-cropping in adhesive clay soils. Trans. ASABE 2002, 45, 1263–1270. [Google Scholar] [CrossRef]
- Williams, A.; Kane, D.A.; Ewing, P.M.; Atwood, L.W.; Jilling, A.; Li, M.; Lou, Y.; Davis, A.S.; Grandy, A.S.; Huerd, S.C.; et al. Soil functional zone management: A vehicle for enhancing production and soil eco-system services in row-crop agroecosystems. Front. Plant Sci. 2016, 7, 65. [Google Scholar] [CrossRef]
- Benincasa, P.; Zorzi, A.; Panella, F.; Tosti, G.; Trevini, M. Strip tillage and sowing: Is precision planting indispensable in silage maize? Int. J. Plant Prod. 2017, 11, 577–588. [Google Scholar]
- Malhi, S.S.; Moulin, A.P.; Johnston, A.M.; Kutcher, H.R. Short-term and long-term effects of tillage and crop rotation on soil physical properties, organic C and N in a Black Chernozem in northeastern Saskatchewan. Can. J. Soil Sci. 2008, 88, 273–282. [Google Scholar] [CrossRef]
- Melero, S.; Lopez-Garrido, R.; Manuel Murillo, J.; and Moreno, F. Conservation tillage: Short- and long-term effects on soil carbon fractions and enzymatic activities under Mediterranean conditions. Soil Tillage Res. 2009, 104, 292–298. [Google Scholar] [CrossRef] [Green Version]
- Hmielowski, T. The value of long-term data in agricultural systems. CSA News 2017, 62, 4–7. [Google Scholar] [CrossRef] [Green Version]
- Johnston, A.E.; Poulton, P.R. The importance of long-term experiments in agriculture: Their management to ensure continued crop production and soil fertility; the Rothamsted experience. Eur. J. Soil Sci. 2018, 69, 113–125. [Google Scholar] [CrossRef] [Green Version]
- Swędrzyńska, D.; Małecka, I.; Blecharczyk, A.; Swędrzyński, A.; Starzyk, J. Effects of various long-term tillage systems on some chemical and biological properties of soil. Pol. J. Environ. Stud. 2013, 22, 1835–1844. [Google Scholar]
- Sokolowski, A.C.; Prack Mc Cormick, B.; De Grazia, J.; Wolski, J.E.; Rodríguez, H.A.; Rodríguez-Frers, E.P.; Gagey, M.C.; Debelis, S.P.; Paladino, I.R.; Barrios, M.B. Tillage and no-tillage effects on physical and chemical properties of an Argiaquoll soil under long-term crop rotation in Buenos Aires, Argentina. Int. Soil Water Conserv. Res. 2020. [Google Scholar] [CrossRef]
- Wang, S.; Wang, H.; Zhang, Y.; Wang, R.; Zhang, Y.; Xu, Z.; Jia, G.; Wang, X.; Li, J. The influence of rotational tillage on soil water storage, water use efficiency and maize yield in semi-arid areas under varied rainfall conditions. Agric. Water Manage. 2018, 203, 376–384. [Google Scholar] [CrossRef]
- Kubar, K.A.; Huang, L.; Lu, J.; Li, X.; Xue, B.; Yin, Z. Integrative effects of no-tillage and straw returning on soil organic carbon and water stable aggregation under rice-rape rotation. Chil. J. Agric. Res. 2018, 78, 205–215. [Google Scholar] [CrossRef] [Green Version]
- Barut, Z.; Celik, I. Tillage Effects on Some Soil Physical Properties in a Semi- Arid Mediterranean Region of Turkey. Chem. Eng. Trans. 2017, 58, 217–222. [Google Scholar]
- Ademir, S.F.; Luiz, F.C.; Ana, R.L.; Luis, A.P.; Ricardo, S.D.; Fabio, F.D.; Wanderley, J.D. Different soil tillage systems influence accumulation of soil organic matter in organic agriculture. Afr. J. Agric. Res. 2016, 11, 5109–5115. [Google Scholar] [CrossRef] [Green Version]
- Haddaway, N.R.; Hedlund, K.; Jackson, L.E.; Kätterer, T.; Lugato, E.; Thomsen, I.K.; Jørgensen, H.B.; Isberg, P.E. How does tillage intensity affect soil organic carbon? A systematic review. Environ. Evid. 2017, 6, 2–48. [Google Scholar] [CrossRef] [Green Version]
- Mathew, R.P.; Feng, Y.; Githinji, L.; Ankumah, R.; Balkcom, K.S. Impact of no-tillage and conventional tillage systems on soil microbial communities. Appl. Environ. Soil Sci. 2012, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Essel, E.; Li, L.; Deng, C.; Xie, J.; Zhang, R.; Luo, Z.; Cai, L.; Lupwayi, N. Evaluation of bacterial and fungal diversity in a long-term spring wheat – field pea rotation field under different tillage practices. Can. J. Soil Sci. 2018, 98, 1–19. [Google Scholar] [CrossRef]
- Sun, R.; Li, W.; Dong, W.; Tian, Y.; Hu, C.; Liu, B. Tillage changes vertical distribution of soil bacterial and fungal communities. Front. Microbiol. 2018, 9, 699. [Google Scholar] [CrossRef]
- Briones, M.J.I.; Schmidt, O. Conventional tillage decreases the abundance and biomass of earthworms and alters their community structure in a global meta-analysis. Glob. Chang. Biol. 2017, 23, 4396–4419. [Google Scholar] [CrossRef] [Green Version]
- Preston, C.L.; Ruiz Diaz, D.A.; Mengel, D.B. Corn response to longterm phosphorus fertilizer application rate and placement with strip-tillage. Agron. J. 2019, 111, 841–850. [Google Scholar] [CrossRef]
- Jaskulska, I.; Jaskulski, D. Strip-Till One-Pass Technology in Central and Eastern Europe: A MZURI Pro-Til Hybrid Machine Case Study. Agronomy 2020, 10, 925. [Google Scholar] [CrossRef]
- Laufer, D.; Loibl, B.; Märländer, B.; Koch, H.-J. Soil erosion and surface runoff under strip tillage for sugar beet (Beta vulgaris L.) in Central Europe. Soil Tillage Res. 2016, 162, 1–7. [Google Scholar] [CrossRef]
- WRB. World Reference Base for Soil Resources 2014. In International Soil Classification System for Naming Soils and Creating Legends for Soil Maps; IUSS Working Group WRB; World Soil Resources Reports No. 106; FAO: Rome, Italy, 2014. [Google Scholar]
- Peel, M.C.; Finlayson, B.L.; McMahon, T.A. Updated world map of the Köppen-Geiger climate classification. Hydrol. Earth Syst. Sci. 2007, 11, 1633–1644. [Google Scholar] [CrossRef] [Green Version]
- Available online: https://upload.wikimedia.org/wikipedia/commons/thumb/e/e6/Poland_in_European_Union.svg/561px-Poland_in_European_Union.svg.png (accessed on 12 August 2020).
- Thalmann, A. Zur methodic derestimung der Dehydrogenaseaktivität und Boden mittels Triphenyltetrazoliumchlorid (TTC). Landwirtsch. Forsch 1968, 21, 249–258. [Google Scholar]
- Tabatabai, M.A.; Bremner, J.M. Use of p–nitrophenol phosphate for assay of soil phosphatase activity. Soil Biol. Biochem. 1969, 1, 301–307. [Google Scholar] [CrossRef]
- Johnson, J.I.; Temple, K.L. Some variables affecting the measurements of catalase activity in soil. Soil Sci. Soci. Am. 1964, 28, 207–209. [Google Scholar] [CrossRef]
- TIBCO Software INC. Statistica (Data Analysis Software System, Version 12. Available online: http://statistica.io (accessed on 1 January 2017).
- Reicosky, D.C. Conservation tillage is not conservation agriculture. J. Soil Water Conserv. 2015, 70, 103A–108A. [Google Scholar] [CrossRef] [Green Version]
- Jaskulska, I.; Gałęzewski, L.; Piekarczyk, M.; Jaskulski, D. Strip-till technology - a method for uniformity in the emergence and plant growth of winter rapeseed (Brassica napus L.) in different environmental conditions of Northern Poland. Ital. J. Agron. 2018, 13, 194–199. [Google Scholar] [CrossRef]
- Jaskulska, I.; Gałązka, A.; Jaskulski, D. Strip-till as a means of decreasing spatial variability of winter barley within a field scale. Acta Agr. Scand. B-S. P. 2019, 69, 516–527. [Google Scholar] [CrossRef]
- Jaskulska, I.; Jaskulski, D.; Różniak, M.; Radziemska, M.; Gałęzewski, L. Zonal Tillage as Innovative Element of the Technology of Growing Winter Wheat: A Field Experiment under Low Rainfall Conditions. Agriculture 2020, 10, 105. [Google Scholar] [CrossRef] [Green Version]
- Pöhlitz, J.; Rücknagel, J.; Koblenz, B.; Schlüter, S.; Vogel, H.-J.; Christen, O. Computed tomography and soil physical measurements of compactionbehavior under strip tillage, mulch tillage and no tillage. Soil Tillage Res. 2018, 175, 205–216. [Google Scholar] [CrossRef]
- Williams, A.; Davis, A.S.; Ewing, P.M.; Grandy, A.S.; Kane, D.A.; Koide, R.T.; Mortensen, D.A.; Smith, R.G.; Snapp, S.S.; Spokas, K.A.; et al. A comparison of soil hydrothermal properties in zonal and uniform tillage systems across the US Corn Belt. Geoderma 2016, 273, 12–19. [Google Scholar] [CrossRef] [Green Version]
- Tabatabaeekoloor, R. Soil characteristics at the in-row and inter-row zones after strip-tillage. Afr. J. Agric. Res. 2011, 6, 6598–6603. [Google Scholar] [CrossRef]
- Shen, Y.; McLaughlin, N.; Zhang, X.; Xu, M.; Liang, A. Effect of tillage and crop residue on soil temperature following planting for a Black soil in Northeast China. Sci. Rep. 2018, 8, 4500. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mulumba, L.N.; Lal, R. Mulching effects on selected soil physical properties. Soil Tillage Res. 2008, 98, 106–111. [Google Scholar] [CrossRef]
- Al-Kaisi, M.M.; Douelle, A.; Kwaw-Mensah, D. Soil microaggregate and macroaggregate decay over time and soil carbon change as influenced by different tillage systems. J. Soil Water Conserv. 2014, 69, 574–580. [Google Scholar] [CrossRef] [Green Version]
- Fernández, F.G.; Sorensenb, B.A.; Villamil, M.B. A comparison of soil properties after five years of no-till and strip-till. Agron. J. 2015, 107, 1339–1346. [Google Scholar] [CrossRef]
- Fernández, F.G.; Schaefer, D. Assessment of soil phosphorus and potassium following real time kinematic-guided broadcast and deepband placement in strip-till and no-till. Soil Sci. Soc. Am. J. 2012, 76, 1090–1099. [Google Scholar] [CrossRef] [Green Version]
- Fernández, F.G.; White, C. No-till and strip-till corn production with broadcast and subsurface-band phosphorus and potassium. Agron. J. 2012, 104, 996–1005. [Google Scholar] [CrossRef]
- Yuan, M.; Fernández, F.G.; Pittelkow, C.; Greer, K.; Schaefer, D. Soil and crop response to phosphorus and potassium management under conservation tillage. Agron. J. 2020, 1–15. [Google Scholar] [CrossRef]
- Krauss, M.; Berner, A.; Perrochet, F.; Frei, R.; Niggli, U.; Mäder, P. Enhanced soil quality with reduced tillage and solid manures in organic farming—A synthesis of 15 years. Sci. Rep. 2020, 10, 4403. [Google Scholar] [CrossRef] [Green Version]
- Bertrand, M.; Barot, S.; Blouin, M.; Whalen, J.; de Oliveira, T.; Roger-Estrade, J. A review. Agron. Sustain. Dev. 2015, 35, 553–567. [Google Scholar] [CrossRef]
- Moos, J.H.; Schrader, S.; Paulsen, H.M. Reduced tillage enhances earthworm abundance and biomass in organic farming: A meta-analysis. Appl. Agric. For. Res. 2017, 67, 123–128. [Google Scholar]
- Vyn, T.J.; Raimbault, B.A. Evaluation of strip tillage systems for corn production in Ontario. Soil Tillage Res. 1992, 23, 163–176. [Google Scholar] [CrossRef]
- Khalilian, A.; Jones, M.A.; Bauer, P.J.; Marshall, M.W. Comparison of five tillage systems in Coastal Plain soils for cotton production. Open J. Soil Sci. 2017, 7, 245–258. [Google Scholar] [CrossRef] [Green Version]
- Procházková, E.; Kincl, D.; Kabelka, D.; Vopravil, J.; Nerušil, P.; Menšík, L.; Barták, V. The impact of the conservation tillage “maize into grass cover” on reducing the soil loss due to erosion. Soil Water Res. 2020, 15, 158–165. [Google Scholar]
- Nunes, M.R.; Karlen, D.L.; Moorman, T.B. Tillage intensity effects on soil structure indicators—A US meta-analysis. Sustainability 2020, 12, 2071. [Google Scholar] [CrossRef] [Green Version]
- Chen, H.; Dai, Z.; Veach, A.M.; Xu, J.; Schadt, C.W. Global meta-analyses show that conservation tillage practices promote soil fungal and bacterial biomass. Agric. Ecosyst. Environ. 2020, 293, 106841. [Google Scholar] [CrossRef]
- Villamil, M.B.; Miguez, F.E.; Bollero, G.A. Multivariate analysis and visualization of soil quality data for no-till systems. J. Environ. Qual. 2008, 37, 2063–2069. [Google Scholar] [CrossRef]
- Niewiadomska, A.; Majchrzak, L.; Borowiak, K.; Wolna-Maruwka, A.; Waraczewska, Z.; Budka, A.; Gaj, R. The influence of tillage and cover cropping on soil microbial parameters and spring wheat physiology. Agronomy 2020, 10, 200. [Google Scholar] [CrossRef] [Green Version]
- Hossain, M.I.; Haque, M.E.; Meisner, C.A.; Sufian, M.A.; Rahman, M.M. Strip tillage planting method for better wheat establishment. J. Sci. Technol. 2005, 3, 91–95. [Google Scholar]
- Hoque, M.; Miah, M.S. Evaluation of different tillage methods to assess BARI inclined plate planter. Agric. Eng. Int. 2015, 17, 128–137. [Google Scholar]
Property | Tillage Treatment | ||
---|---|---|---|
Strip-Till One-Pass (ST-OP) | Reduced (RT) | Conventional (CT) | |
Texture (%): | |||
sand (2–0.05 mm) | 49.0 | 47.8 | 48.5 |
silt (0.05–0.002 mm) | 45.6 | 47.0 | 46.3 |
clay (<0.002 mm) | 5.4 | 5.2 | 5.2 |
pH | 5.9 | 6.0 | 6.0 |
Organic carbon (g C kg−1 soil) | 10.8 | 10.6 | 10.7 |
Total nitrogen (g N kg−1 soil) | 0.98 | 1.01 | 0.97 |
Available nutrients: | |||
phosphorus (mg P kg−1 soil) | 96.3 | 94.5 | 98.0 |
potassium (mg K kg−1 soil) | 280.5 | 276.4 | 281.3 |
magnesium (mg Mg kg−1 soil) | 93.1 | 95.0 | 94.4 |
Month | Year | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
2012 | 2013 | 2014 | 2015 | 2016 | 2017 | 2018 | 2019 | 2020 | 1981–2010 | |
Air temperature (°C) | ||||||||||
January | - | −3.5 | −3.2 | 1.1 | −3.3 | −2.6 | 0.8 | −0.7 | 2.6 | −1.8 |
February | - | −0.9 | 2.0 | 0.1 | 2.5 | −0.5 | −3.2 | 2.6 | 3.6 | −0.9 |
March | - | −3.0 | 5.6 | 4.1 | 33.0 | 5.4 | −0.2 | 5.4 | 3.9 | 2.5 |
April | - | 7.0 | 9.9 | 7.6 | 8.3 | 6.8 | 12.0 | 9.3 | 8.2 | 7.9 |
May | - | 14.2 | 13.3 | 12.4 | 14.7 | 13.4 | 16.9 | 12.1 | 11.2 | 13.3 |
June | - | 17.4 | 16.0 | 15.6 | 17.7 | 16.8 | 18.4 | 21.9 | 17.9 | 16.1 |
July | - | 18.9 | 21.5 | 18.5 | 18.3 | 17.7 | 20.5 | 18.6 | 18.3 | 18.6 |
August | 17.6 | 18.1 | 17.2 | 21.0 | 16.4 | 17.7 | 19.9 | 19.7 | - | 17.9 |
September | 13.3 | 10.7 | 14.4 | 13.8 | 14.3 | 13.0 | 15.6 | 13.5 | - | 13.1 |
October | 7.4 | 8.2 | 9.6 | 6.4 | 6.3 | 10.1 | 9.8 | 9.8 | - | 8.2 |
November | 4.5 | 4.9 | 4.3 | 4.8 | 2.5 | 4.5 | 4.5 | 5.5 | - | 2.9 |
December | −2.5 | 1.8 | 0.5 | 3.7 | 1.4 | 2.0 | 2.0 | 2.7 | - | −0.6 |
Average | - | 7.8 | 9.3 | 9.1 | 11.0 | 8.7 | 9.8 | 10.0 | - | 8.1 |
Precipitation (mm) | ||||||||||
January | - | 44.0 | 23.5 | 33.2 | 20.3 | 14.5 | 46.3 | 32.6 | 37.7 | 26.8 |
February | - | 31.3 | 18.0 | 8.9 | 19.0 | 30.3 | 5.8 | 18.1 | 36.0 | 20.7 |
March | - | 14.7 | 49.7 | 35.7 | 23.2 | 27.5 | 16.4 | 28.8 | 26.1 | 31.9 |
April | - | 13.6 | 40.7 | 15.6 | 28.7 | 40.8 | 40.4 | 1.5 | 0.7 | 27.0 |
May | - | 91.7 | 65.7 | 21.6 | 51.4 | 56.3 | 14.2 | 89.2 | 34.2 | 49.3 |
June | - | 49.3 | 44.9 | 33.0 | 98.1 | 54.3 | 26.4 | 17.7 | 142.0 | 52.8 |
July | - | 79.0 | 55.4 | 50.4 | 133.8 | 118.9 | 86.0 | 22.4 | 67.2 | 69.8 |
August | 51.8 | 56.6 | 57.3 | 20.3 | 55.3 | 126.1 | 23.7 | 37.7 | - | 62.6 |
September | 25.1 | 64.1 | 25.9 | 52.4 | 19.4 | 78.4 | 17.0 | 98.5 | - | 46.0 |
October | 40.3 | 18.6 | 18.0 | 20.9 | 116.3 | 106.8 | 34.1 | 35.9 | - | 31.5 |
November | 53.7 | 28.5 | 24.5 | 37.0 | 41.7 | 30.5 | 7.2 | 69.6 | - | 32.4 |
December | 27.2 | 19.1 | 69.3 | 24.4 | 42.7 | 38.8 | 50.3 | 21.1 | - | 34.0 |
Total | - | 510.5 | 492.9 | 353.4 | 649.9 | 723.2 | 367.8 | 473.1 | - | 484.8 |
Components of Organic Matter | Unit | Strip-Till One-Pass (ST-OP) | Reduced (RT) | Conventional (CT) |
---|---|---|---|---|
Dissolved organic carbon (DOC) | g kg−1 | 129.9 a | 132.0 a | 93.4 b |
Carbon after decalcification (Cd) | mg kg−1 | 329.2 a | 317.5 a | 278.0 b |
Carbon of humic acids (CHas) | mg kg−1 | 3339.3 a | 3276.3 a | 2408.4 b |
Carbon of fulvic acids (CFAs) | mg kg−1 | 3022.5 a | 2932.2 a | 2279.4 b |
Carbon in humins (Ch) | mg kg−1 | 5496.1 a | 5448.9 a | 5211.0 a |
Dissolved nitrogen (DNt) | mg kg−1 | 36.3 a | 34.6 b | 28.6 c |
Nitrogen after decalcification (Nd) | mg kg−1 | 57.3 a | 44.7 b | 31.8 c |
Nitrogen of humic acids (NHas) | mg kg−1 | 177.1 a | 156.7 b | 117.9 c |
Nitrogen of fulvic acids (NFAs) | mg kg−1 | 171.5 a | 169.0 a | 137.9 b |
Nitrogen in humins (Nh) | mg kg−1 | 720.8 b | 784.0 a | 785.5 a |
Property | Strip-Till One-Pass (ST-OP) | Reduced (RT) | Conventional (CT) | |||
---|---|---|---|---|---|---|
R | I-R | R | I-R | R | I-R | |
0–5 cm | ||||||
Penetration resistance—PR (MPa) | 0.43 b | 0.64 a | 0.38 c | 0.38 c | 0.40 bc | 0.39 c |
Moisture—SM (% vol.) | 12.1 b | 14.5 a | 11.6 b | 11.8 b | 11.4 b | 11.6 b |
Bulk density—BD (g cm−3) | 1.27 b | 1.46 a | 1.25 b | 1.26 b | 1.23 b | 1.21 b |
15–20 cm | ||||||
Penetration resistance—PR (MPa) | 2.38 b | 2.73 a | 2.35 b | 2.26 bc | 2.14 c | 2.06 c |
Moisture —SM (% vol.) | 16.2 ab | 17.0 a | 15.0 b | 15.4 b | 15.2 b | 14.9 b |
Bulk density—BD (g cm−3) | 1.46 b | 1.58 a | 1.45 b | 1.43 b | 1.41 b | 1.39 b |
25–30 cm | ||||||
Penetration resistance—PR (MPa) | 2.51 c | 2.48 c | 2.70 b | 2.70 b | 3.03 a | 2.98 a |
Moisture—SM (% vol.) | 18.4 a | 18.2 a | 17.9 a | 18.0 a | 18.3 a | 18.0 a |
Bulk density—BD (g cm−3) | 1.62 b | 1.63 b | 1.67 ab | 1.68 ab | 1.77 a | 179 a |
Property | Unit | Strip-Till One-Pass (ST-OP) | Reduced (RT) | Conventional (CT) |
---|---|---|---|---|
Earthworms | no m−2 | 86.3 a | 48.5 b | 20.3 c |
Earthworms | g m−2 | 111.9 a | 52.3 b | 23.2 c |
Bacteria | 106 cfu g−1 | 44.6 a | 36.7 b | 31.3 c |
Cellulolytic microorganisms | 106 cfu g−1 | 25.5 a | 22.4 b | 17.9 c |
Actinobacteria | 105 cfu g−1 | 63.6 a | 64.1 a | 43,0 b |
Filamentous fungi | 104 cfu g−1 | 62.8 a | 55.7 b | 38.4 c |
Dehydrogenase | mg TPF kg−1 24 h−1 | 1.086 a | 0.903 b | 1.004 a |
Alkaline phosphatase (AlP) | mM pNP kg−1 h−1 | 1.106 a | 0.985 b | 0.899 c |
Acid phosphatase (AcP) | mM pNP kg−1 h−1 | 2.231 a | 2.075 b | 1.921 b |
Catalase (CAT) | mg H2O2 kg−1 h−1 | 0.467 a | 0.411 b | 0.452 a |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jaskulska, I.; Romaneckas, K.; Jaskulski, D.; Gałęzewski, L.; Breza-Boruta, B.; Dębska, B.; Lemanowicz, J. Soil Properties after Eight Years of the Use of Strip-Till One-Pass Technology. Agronomy 2020, 10, 1596. https://doi.org/10.3390/agronomy10101596
Jaskulska I, Romaneckas K, Jaskulski D, Gałęzewski L, Breza-Boruta B, Dębska B, Lemanowicz J. Soil Properties after Eight Years of the Use of Strip-Till One-Pass Technology. Agronomy. 2020; 10(10):1596. https://doi.org/10.3390/agronomy10101596
Chicago/Turabian StyleJaskulska, Iwona, Kestutis Romaneckas, Dariusz Jaskulski, Lech Gałęzewski, Barbara Breza-Boruta, Bożena Dębska, and Joanna Lemanowicz. 2020. "Soil Properties after Eight Years of the Use of Strip-Till One-Pass Technology" Agronomy 10, no. 10: 1596. https://doi.org/10.3390/agronomy10101596
APA StyleJaskulska, I., Romaneckas, K., Jaskulski, D., Gałęzewski, L., Breza-Boruta, B., Dębska, B., & Lemanowicz, J. (2020). Soil Properties after Eight Years of the Use of Strip-Till One-Pass Technology. Agronomy, 10(10), 1596. https://doi.org/10.3390/agronomy10101596