Regulation of Nanomaterials in Crop Growth and Physiology Under Abiotic Stress

A special issue of Agronomy (ISSN 2073-4395). This special issue belongs to the section "Plant-Crop Biology and Biochemistry".

Deadline for manuscript submissions: 31 October 2025 | Viewed by 4742

Special Issue Editors


E-Mail Website
Guest Editor
Department of Chemical and Pharmaceutical Sciences, School of Life Sciences, Pharmacy and Chemistry, Kingston University, Kingston upon Thames, London KT1 2EE, UK
Interests: nanomaterials; heavy metals; environment
Special Issues, Collections and Topics in MDPI journals

E-Mail Website
Guest Editor
Bamboo Research Institute, Nanjing Forestry University, Nanjing 210037, China
Interests: heavy metals stress; nanoparticle; plant stress tolerance; salinity; drought stress

Special Issue Information

Dear Colleagues,

The application of nanomaterials in agriculture has emerged as a revolutionary approach to enhance crop growth and resilience, particularly under abiotic stress conditions such as heavy metals, drought, salinity, and extreme temperatures. Integrating nanotechnology in crop science aims to improve plant growth, nutrient uptake, and stress tolerance, thereby contributing to sustainable agricultural practices. Historically, the development and utilization of nanomaterials have progressed from basic laboratory research to field applications, demonstrating significant potential in mitigating the adverse effects of environmental stresses on crops.

This Special Issue's primary aim is to explore nanomaterials' regulatory mechanisms in crop growth and physiology under various abiotic stress conditions. We seek to provide a comprehensive platform for researchers to present their latest findings and innovative approaches in this rapidly evolving field. This Special Issue will cover the synthesis and characterization of nanomaterials, their interaction with plant systems, and the underlying molecular and physiological mechanisms that confer stress tolerance.

We are particularly interested in cutting-edge research that delves into nanomaterials' role in enhancing crop resilience, improving yield, and ensuring food security under changing climate conditions. Contributions that offer new insights into the safety, efficacy, and environmental impact of nanomaterials in agriculture are highly encouraged.

We solicit original research articles, reviews, and case studies that address topics such as the development of novel nanomaterials, their application in crop management under stress conditions, and the elucidation of their regulatory pathways in plants. This Special Issue aims to gather high-quality papers that push the boundaries of current knowledge and foster advancements in the sustainable use of nanotechnology in agriculture.

Prof. Dr. James Barker
Dr. Abolghassem Emamverdian
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Agronomy is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2600 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • nanoparticles
  • biogenic nanoparticles
  • heavy metal stress
  • salinity: cold stress
  • drought stress
  • temperature
  • reactive oxygen species

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • e-Book format: Special Issues with more than 10 articles can be published as dedicated e-books, ensuring wide and rapid dissemination.

Further information on MDPI's Special Issue policies can be found here.

Published Papers (4 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

22 pages, 11850 KiB  
Article
Enhanced Cd Tolerance in Bamboo: Synergistic Effects of Nano-Hydroxyapatite and Fe3O4 Nanoparticles on Reactive Oxygen Species Scavenging, Cd Detoxification, and Water Balance
by Abolghassem Emamverdian, Ahlam Khalofah, Necla Pehlivan and Yang Li
Agronomy 2025, 15(2), 386; https://doi.org/10.3390/agronomy15020386 - 31 Jan 2025
Viewed by 728
Abstract
Nano-hydroxyapatite (n-HAP) and Fe3O4 NPs (Fe3O4 NPs) offer effective and economical approaches for reducing Cd toxicity, which presents considerable risks to both environmental and human health. We examined the mechanisms through which these NPs mitigate Cd toxicity [...] Read more.
Nano-hydroxyapatite (n-HAP) and Fe3O4 NPs (Fe3O4 NPs) offer effective and economical approaches for reducing Cd toxicity, which presents considerable risks to both environmental and human health. We examined the mechanisms through which these NPs mitigate Cd toxicity in bamboo, Pleioblastus pygmaeus. The plants were exposed to Cd (0, 50, 100, and 150 mg L−1) and received foliar sprays of 100 mg L−1 n-HAP, 100 mg L−1 Fe3O4 NPs, and a combination of both treatments. The findings indicated that Cd exposure led to oxidized molecules in bamboo, as evidenced by elevated levels of reactive oxygen species (ROS) and lipoperoxidation. Foliar treatments utilizing n-HAP and Fe3O4 NPs markedly diminished these effects. H2O2, O2•−, malondialdehyde (MDA), and electrolyte leakage (EL) levels decreased by 56%, 71%, 65%, and 72%, respectively, compared to the controls. The application of n-HAP and Fe3O4 NPs significantly enhanced the enzymes, including superoxide dismutase (SOD), peroxidase (POD), catalase (CAT), glutathione reductase (GR), and phenylalanine ammonia-lyase (PAL), with increases observed between 28% and 56%. Furthermore, there was an enhancement in proline accumulation, total phenolic content (TPC), flavonoids (TFC), nitric oxide levels, relative water content (RWC), chlorophyll concentration, and photosynthetic parameters. The combination of n-HAP and Fe3O4 NPs was most effective in improving bamboo tolerance to Cd, especially at moderate Cd concentrations of 50 and 80 mg L−1. The results indicate that n-HAP and Fe3O4 NPs, particularly in combination, may mitigate Cd toxicity by decreasing Cd uptake, improving antioxidant capacity, and preserving plant water balance. Full article
Show Figures

Figure 1

25 pages, 7532 KiB  
Article
Resulting Key Physiological Changes in Triticum aestivum L. Plants Under Drought Conditions After Priming the Seeds with Conventional Fertilizer and Greenly Synthesized Zinc Oxide Nanoparticles from Corn Wastes
by Roquia Rizk, Mostafa Ahmed, Donia Abdul-Hamid, Mostafa Zedan, Zoltán Tóth and Kincső Decsi
Agronomy 2025, 15(1), 211; https://doi.org/10.3390/agronomy15010211 - 16 Jan 2025
Viewed by 817
Abstract
This research study investigated the production and properties of zinc oxide (ZnO) nanoparticles derived from corn husks and their priming effects on wheat plant proliferation and antioxidant mechanisms compared to the nutri-priming technique under regular irrigation and drought-stressed conditions. Transmission and scanning electron [...] Read more.
This research study investigated the production and properties of zinc oxide (ZnO) nanoparticles derived from corn husks and their priming effects on wheat plant proliferation and antioxidant mechanisms compared to the nutri-priming technique under regular irrigation and drought-stressed conditions. Transmission and scanning electron microscopy (TEM and SEM), energy-dispersive X-ray spectroscopy (EDAX), and X-ray diffraction confirmed the nanoparticles’ hexagonal morphology and typical dimensions of 51 nm. The size and stability of these nanoparticles were assessed through the size distribution and zeta potential analysis, indicating reasonable stability. Fourier-transform infrared spectroscopy (FTIR) detected the newly formed functional groups. This study emphasized the role of reactive oxygen species (ROS) and phenolic compounds in plant responses to nanoparticle treatment, particularly in detoxifying harmful radicals. The research also examined the activity of antioxidant enzymes, including peroxidase (POX), catalase (CAT), and glutathione reductase (GR), in alleviating stress caused by oxidation while subjected to various treatments, including micronutrient seed priming with DR GREEN fertilizer. Some biochemical compounds, such as total phenolics (TPCs), total flavonoids (TFCs), and total hydrolysable sugars, were estimated as well to show the effect of the different treatments on the wheat plants. The findings suggested that ZnO nanoparticles can enhance antioxidant enzyme activity under certain conditions while posing phytotoxic risks, underscoring the complexity of plant–nanoparticle interactions and the potential for improving crop resilience through targeted micronutrient applications. Full article
Show Figures

Figure 1

19 pages, 40086 KiB  
Article
Nanopriming-Induced Enhancement of Cucumber Seedling Development: Exploring Biochemical and Physiological Effects of Silver Nanoparticles
by Beatriz Pintos, Hugo de Diego and Arancha Gomez-Garay
Agronomy 2024, 14(8), 1866; https://doi.org/10.3390/agronomy14081866 - 22 Aug 2024
Cited by 2 | Viewed by 1312
Abstract
Nanopriming, a technique that involves treating seeds with nanoparticles, is gaining attention for enhancing seed germination and seedling growth. This study explored the effects of silver nanoparticles (AgNPs), synthesized using Ascorbic acid, Caffeic acid, and Gallic acid, on cucumber seedling development. The nanoparticles, [...] Read more.
Nanopriming, a technique that involves treating seeds with nanoparticles, is gaining attention for enhancing seed germination and seedling growth. This study explored the effects of silver nanoparticles (AgNPs), synthesized using Ascorbic acid, Caffeic acid, and Gallic acid, on cucumber seedling development. The nanoparticles, characterized by spherical morphology and distinct optical properties, showed varying effects based on the type and concentration of the reducing agents used. AgNP treatments generally led to higher germination rates and improved shoot and root growth compared to controls. Biochemical analyses revealed that these treatments influenced plant physiology, affecting reactive oxygen species (ROS) production, oxidative stress markers, and the content of amino acids, phenolic compounds, flavonoids, and soluble sugars. Specifically, certain AgNP treatments reduced oxidative stress, while others increased oxidative damage. Additionally, variations in free amino acids and phenolic and flavonoid contents were noted, suggesting complex interactions between nanoparticles and plant biochemical pathways. These findings highlight the potential of nanopriming in agriculture and underscore the need for further research to optimize nanoparticle formulations for different plant species. Full article
Show Figures

Graphical abstract

22 pages, 1980 KiB  
Article
The Influence of Cuprous Oxide Nanoparticles on Photosynthetic Efficiency, Antioxidant Responses and Grain Quality throughout the Soybean Life Cycle
by Nan Wang, Xiangrong Tian, Peipei Song, Wei Guo, Kaiyue Zhang, Juan Li and Zhanqiang Ma
Agronomy 2024, 14(8), 1821; https://doi.org/10.3390/agronomy14081821 - 17 Aug 2024
Viewed by 1371
Abstract
The widespread application of nanoparticles (NPs) in agriculture has not only enhanced the efficiency of agrochemical use but also introduced environmental pollution, potentially impacting human health through absorption and accumulation in edible plants. The purpose of this study was to evaluate the toxic [...] Read more.
The widespread application of nanoparticles (NPs) in agriculture has not only enhanced the efficiency of agrochemical use but also introduced environmental pollution, potentially impacting human health through absorption and accumulation in edible plants. The purpose of this study was to evaluate the toxic effects and ecological risks of Cu2O nanoparticles (nCu2O) in the life cycle of soybean, and to provide a theoretical basis for the safe application of NPs in agriculture. Soybeans were grown in natural soil modified with nCu2O, bulk cuprous oxide (bCu2O) and copper sulfate (CuSO4) at concentrations of 0, 50, 200, and 800 mg/kg. Samples and grains from treated soybeans were collected at the flowering, podding, and seed-filling stages for analysis. The results indicated that treatments with nCu2O, bCu2O, and Cu2+ reduced the chlorophyll content in soybean leaves, thereby affecting photosynthesis. Significant reductions were observed in the net photosynthetic rate (Pn), the transpiration rate (Tr), stomatal conductance (Gs), the quantum yield of photosystem II (Y(II)), photochemical quenching (qP), and the electron transport rate (ETR) at high concentrations. However, the toxicity of nCu2O to photosynthesis recovers as the plant grows. Almost all treatments increased the levels of antioxidant enzymes (SOD, POD, CAT) and reduced oxidative stress. In the nCu2O and bCu2O treatments, grain protein content was significantly reduced, while fat and water content increased. Phosphorus (P) content decreased, whereas sulfur (S), potassium (K), magnesium (Mg) and calcium (Ca) contents increased. The accumulation of copper in plants followed the order nCu2O > bCu2O > Cu2+, with the bCu2O treatment being slightly more toxic than the nCu2O treatment, and both being more toxic than the Cu2+ treatment. The above data indicated that nCu2O had a dose-dependent effect, which significantly inhibited soybean growth and changed grain quality at high concentrations. Full article
Show Figures

Figure 1

Back to TopTop