Advancements in Best Management Practices for Enhancing Soil Health and Water Quality

A special issue of Agriculture (ISSN 2077-0472). This special issue belongs to the section "Agricultural Soils".

Deadline for manuscript submissions: closed (31 March 2025) | Viewed by 2185

Special Issue Editors


E-Mail Website
Guest Editor
High Performance Computing Collaboratory—Geosystems Research Insititute, Mississippi State University, Starkville, MS 39759, USA
Interests: best management practices; food–energy–water nexus; water conservation; regenerative agriculture; precision agriculture; smart irrigation; soil health assessment; soil physics; nutrient management; crop physiology; crop model; climate change; agricultural pollution control (N & P); machine learning; UAV
Special Issues, Collections and Topics in MDPI journals
Department of Agronomy, Horticulture, and Plant Science, South Dakota State University, Brookings, SD 57007, USA
Interests: soil health; soil biogeochemistry; carbon sequestration; nutrient management; sustainable agriculture; pasture management
Special Issues, Collections and Topics in MDPI journals
Red River Research Station and School of Plant, Environmental and Soil Sciences, Louisiana State University Agricultural Center, Bossier City, LA 71112, USA
Interests: soil–ecosystem–climate interactions at different spatial scales; soil functions and agroecosystem services; soil structure/subsurface flow paths evolution and water/solute transport in the vadose zone; soil water dynamics at different spatial and temporal scales; coupling soil water processes and biogeochemical cycles; sustainable soil and water management; geostatistics

Special Issue Information

Dear Colleagues,

This topic delves into the cutting-edge strategies and methodologies that are currently working to enhance the sustainability of agricultural systems. This Special Issue highlights the latest research and technological innovations that aim to improve soil health and water quality in agroecosystems. In exploring a spectrum of practices, from precision agriculture to eco-friendly land management techniques, we seek to establish a framework for sustainable farming that balances productivity with environmental protection. The contributions herein aim to guide land managers to adopt practices that not only enhance agricultural output but also ensure the long-term viability of water and soil resources, thereby fostering a healthier planet for future generations.

Areas of interest for this Special Issue include but are not limited to

  • Advances in precision agriculture technologies and their impact on soil and water conservation;
  • Evaluation of eco-friendly land management techniques for enhancing ecosystem services;
  • Innovative strategies for optimizing water usage and quality in agricultural systems;
  • The role of sustainable soil management practices in promoting agricultural productivity and environmental health;
  • Integration of traditional knowledge into modern technologies in order to foster sustainable agricultural landscapes.

Both original research and review papers are warmly invited. We look forward to your contributions. Together, let us pave the way for farming practices that celebrate productivity while ensuring the health and viability of our planet's fundamental resources.

Dr. Yuchuan Fan
Dr. Sutie Xu
Dr. Xi Zhang
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Agriculture is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2600 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • sustainability
  • agricultural management practices
  • soil health
  • water quality
  • edge-of-field practice
  • modeling
  • evaluation index

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • e-Book format: Special Issues with more than 10 articles can be published as dedicated e-books, ensuring wide and rapid dissemination.

Further information on MDPI's Special Issue policies can be found here.

Published Papers (3 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

21 pages, 3394 KiB  
Article
Assessment of Integrated BMPs for Subbasin-Scale Soil Erosion Reduction Considering Spatially Distributed Farmland Characteristics
by Jimin Lee, Seoro Lee, Woon Ji Park, Minhwan Shin and Kyoung Jae Lim
Agriculture 2025, 15(8), 893; https://doi.org/10.3390/agriculture15080893 - 20 Apr 2025
Viewed by 178
Abstract
Recent climate change has intensified extreme rainfall events, exacerbating soil erosion and agricultural nonpoint source pollution in South Korea’s steeply sloped farmlands. This study assessed soil erosion reduction measures by applying individual Best Management Practices (BMPs) in cropland and expanding upon existing management [...] Read more.
Recent climate change has intensified extreme rainfall events, exacerbating soil erosion and agricultural nonpoint source pollution in South Korea’s steeply sloped farmlands. This study assessed soil erosion reduction measures by applying individual Best Management Practices (BMPs) in cropland and expanding upon existing management efforts through the implementation of additional BMPs aimed at further reducing soil erosion. Furthermore, priority management areas were identified based on soil erosion reduction efficiency within subbasins. For this evaluation, the Soil and Water Assessment Tool (SWAT) was employed, with a spatially distributed Hydrological Response Unit (SD-HRU) module and calibrated Modified Universal Soil Loss Equation (MUSLE) parameters tailored to Korean watershed conditions. Scenarios 1 and 2 were implemented in the study area to evaluate BMP effectiveness in controlling soil erosion and suspended sediment (SS) loads. Scenario 1 applied a set of BMPs already in place, while Scenario 2 involved the addition of supplementary BMPs to enhance soil erosion control. Scenario 1 resulted in a 34.6% reduction in annual soil erosion and a 35.0% decrease in SS concentration, whereas Scenario 2 achieved a 59.3% reduction in soil erosion and a 57.3% decrease in SS concentration. Subbasin-scale evaluations revealed considerable spatial variability in erosion control efficiency, ranging from 1.3% to 70.5%, highlighting the necessity for spatially targeted management strategies. These results underscore the importance of employing spatially adaptive BMP approaches and offer practical guidance for enhancing watershed sustainability, particularly in regions vulnerable to extreme hydrometeorological events. Full article
Show Figures

Figure 1

20 pages, 10195 KiB  
Article
Optimizing Lucerne Productivity and Resource Efficiency in China’s Yellow River Irrigated Region: Synergistic Effects of Ridge-Film Mulching and Controlled-Release Nitrogen Fertilization
by Minhua Yin, Yuanbo Jiang, Yi Ling, Yanlin Ma, Guangping Qi, Yanxia Kang, Yayu Wang, Qiang Lu, Yujie Shang, Xiangrong Fan, Gangqiang Han, Boda Li, Jiapeng Zhu, Jinxi Chen and Haiyan Li
Agriculture 2025, 15(8), 845; https://doi.org/10.3390/agriculture15080845 - 14 Apr 2025
Viewed by 227
Abstract
To address low productivity and water constraints in lucerne fields of China’s Gansu Yellow River Irrigation Region, this study optimized lucerne (Medicago sativa L.) cultivation through synergistic planting nitrogen regimes. A two-year field trial (2021–2022) evaluated three systems: ridge-furrow with ordinary mulch [...] Read more.
To address low productivity and water constraints in lucerne fields of China’s Gansu Yellow River Irrigation Region, this study optimized lucerne (Medicago sativa L.) cultivation through synergistic planting nitrogen regimes. A two-year field trial (2021–2022) evaluated three systems: ridge-furrow with ordinary mulch (PM), ridge-furrow with biodegradable mulch (BM), and conventional flat planting (FP), under four controlled-release N rates (0, 80, 160, 240 kg ha−1). Multidimensional assessments included growth dynamics, dry matter yield, forage quality (crude protein [CP], acid/neutral detergent fiber [ADF/NDF], relative feed value [RFV]), and resource efficiency metrics (water use efficiency [WUE], irrigation WUE [IWUE], partial factor productivity of N [PFPN], agronomic N use efficiency [ANUE]). The results showed the following: (1) Compared with conventional flat planting, ridge planting with film mulching significantly promoted lucerne growth, with ordinary plastic film providing a stronger effect than biodegradable film. Plant height and stem diameter exhibited a quadratic response to elevated nitrogen (N) application rates under identical planting patterns, peaking at intermediate N levels before declining with further increases. (2) Ridge planting with both ordinary plastic film and biodegradable film combined with an appropriate N rate improved lucerne yield and quality. In particular, the PMN2 treatment reached the highest value of yield (14,600 kg ha−1), CP (19.19%) and RFV (124.18), and the lowest value of ADF (29.63%) and NDF (48.86%), and all of them were significantly better than the other treatments (p < 0.05). (3) WUE, IWUE, PFPN, and ANUE followed the pattern PM > BM > FP. With increasing N application rates, WUE, IWUE, and ANUE initially rose and then declined, peaking under N2, whereas PFPN showed a decreasing trend and reached its maximum under N1. Principal component analysis revealed that ridge planting with ordinary plastic film combined with 160 kg·ha−1 N (PMN2) optimized lucerne performance, achieving balanced improvements in yield, forage quality, and water–nitrogen use efficiency. This regimen is recommended as the optimal strategy for lucerne cultivation in the Gansu Yellow River Irrigation Region and analogous ecoregions. Full article
Show Figures

Figure 1

21 pages, 11891 KiB  
Article
Optimization of Tillage Operation Parameters to Enhance Straw Incorporation in Rice-Wheat Rotation Field
by Sagni B. Miressa, Qishuo Ding, Yinian Li and Edwin O. Amisi
Agriculture 2025, 15(1), 54; https://doi.org/10.3390/agriculture15010054 - 28 Dec 2024
Viewed by 1224
Abstract
In the rice-wheat system, using straw for soil incorporation provides better soil health and improves agricultural production. The experiment was performed in Babaiqiao town, Jiangsu Province, China’s Luhe District, Nanjing City, in June 2024 using a Shichao TG-500 tractor equipped with a Qingxuan [...] Read more.
In the rice-wheat system, using straw for soil incorporation provides better soil health and improves agricultural production. The experiment was performed in Babaiqiao town, Jiangsu Province, China’s Luhe District, Nanjing City, in June 2024 using a Shichao TG-500 tractor equipped with a Qingxuan 1GKN-180 rotary cultivator. The impacts of the three tillage practices, deep rotary tiller with straw (DRTS), shallow rotary tiller with straw (SRTS), and no-tillage with straw return (NTSR), on the level of soil disturbance were observed in the single-factor and two-factor interaction experiments. Based on the profilometry analysis, it was observed that DRTS had the highest value of soil disturbance while SRTS had a moderate disturbance value and NTSR minimized disturbance. The effects of working depths, forward speed, and rotation speed on the straw return rate have been evaluated by further investigations. The results showed that enhancing straw return rates was significantly impacted by changing the tilling depths and the rotation speeds, especially when using deeper tillage and moderate to high rotary speeds. The investigation found that the forward speed, blade rotation speed, and tillage depth explained the overall rates of straw return, soil breaking, and soil flatness. In the research, the response surface design employed was the Box–Behnken Design (BBD). The optimal operating parameters were 14.23 cm of plowing depth, 297.6 rpm for the rotary blades, and 3.23 km/h for forward speed. Achieved were the following parameters: 94.766% soil breakage rate, 84.97% straw return rates, and 16.36 mm soil flatness. The findings demonstrate the potential to implement strategies through operational parameters to significantly enhance agricultural practices. Full article
Show Figures

Graphical abstract

Back to TopTop