Virtual Reality Application in Evaluating the Soundscape in Urban Environment: A Systematic Review
Abstract
1. Introduction
2. Materials and Methods
2.1. Search Strategy and Eligibility Criteria
- Focus on soundscapes as a central research theme;
- Utilize VR that includes both auditory and visual elements;
- It can be conducted in outdoor or urban environments.
2.2. Analysis of Search Results
3. Results
3.1. Research Goals and Field Selections
3.1.1. Urban Design and Planning
3.1.2. Analysis of Urban Elements
3.1.3. Restorative Effect
3.1.4. Ecological Validity
3.2. Experimental Setup
3.2.1. Production of Visual and Audio Content
- Production of Visual Content
- Production of Audio Content
3.2.2. Visual and Audio Display Technologies
- Visual Display Technologies
- Spatial Audio Reproduction Technologies
3.2.3. Experimental Environment
3.2.4. Questionnaire-Based Evaluation
4. Discussions
4.1. Key Challenges
4.2. Limitations
4.3. Future Directions
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- World Health Organization; Regional Office. Environmental Noise Guidelines for the European Region; World Health Organization: Geneva, Switzerland; Regional Office for Europe: Brussels, Belgium, 2018. [Google Scholar]
- World Urbanization Prospects 2018: Highlights; United Nations: New York, NY, USA, 2019. [CrossRef]
- Jeon, J.Y.; Jo, H.I. Effects of audio-visual interactions on soundscape and landscape perception and their influence on satisfaction with the urban environment. Build. Environ. 2020, 169, 106544. [Google Scholar] [CrossRef]
- Li, H.; Lau, S.-K. A review of audio-visual interaction on soundscape assessment in urban built environments. Appl. Acoust. 2020, 166, 107372. [Google Scholar] [CrossRef]
- Lu, Y.; Hasegawa, Y.; Tan, J.K.A.; Lau, S.-K. Effect of audio-visual interaction on soundscape in the urban residential context: A virtual reality experiment. Appl. Acoust. 2022, 192, 108717. [Google Scholar] [CrossRef]
- Kang, J.; Schulte-Fortkamp, B. (Eds.) Soundscape and Built Enviroment; CRS Press: New York, NY, USA, 2016. [Google Scholar]
- Sanchez-Sepulveda, M.V.; Torres-Kompen, R.; Fonseca, D.; Franquesa-Sanchez, J. Methodologies of Learning Served by Virtual Reality: A Case Study in Urban Interventions. Appl. Sci. 2019, 9, 5161. [Google Scholar] [CrossRef]
- Llorca, J. Virtual Reality for Urban Sound Design: A Tool for Architects and Urban Planners. In Artificial Intelligence—Emerging Trends and Applications; InTech: Houston, TX, USA, 2018. [Google Scholar] [CrossRef]
- Maffei, L.; Massimiliano, M.; Aniello, P.; Gennaro, R.; Virginia, P.R. On the Validity of Immersive Virtual Reality as Tool for Multisensory Evaluation of Urban Spaces. Energy Procedia 2015, 78, 471–476. [Google Scholar] [CrossRef]
- Ruotolo, F.; Maffei, L.; Di Gabriele, M.; Iachini, T.; Masullo, M.; Ruggiero, G.; Senese, V.P. Immersive virtual reality and environmental noise assessment: An innovative audio–visual approach. Environ. Impact Assess. Rev. 2013, 41, 10–20. [Google Scholar] [CrossRef]
- Jiang, L.; Masullo, M.; Maffei, L.; Meng, F.; Vorländer, M. How do shared-street design and traffic restriction improve urban soundscape and human experience?—An online survey with virtual reality. Build. Environ. 2018, 143, 318–328. [Google Scholar] [CrossRef]
- Liu, F.; Kang, J. Relationship between street scale and subjective assessment of audio-visual environment comfort based on 3D virtual reality and dual-channel acoustic tests. Build. Environ. 2018, 129, 35–45. [Google Scholar] [CrossRef]
- Yilmaz, N.G.; Lee, P.-J.; Imran, M.; Jeong, J.-H. Role of sounds in perception of enclosure in urban street canyons. Sustain. Cities Soc. 2023, 90, 104394. [Google Scholar] [CrossRef]
- Lugten, M.; Karacaoglu, M.; White, K.; Kang, J.; Steemers, K. Improving the soundscape quality of urban areas exposed to aircraft noise by adding moving water and vegetation. J. Acoust. Soc. Am. 2018, 144, 2906–2917. [Google Scholar] [CrossRef] [PubMed]
- Taghipour, A.; Sievers, T.; Eggenschwiler, K. Acoustic Comfort in Virtual Inner Yards with Various Building Facades. Int. J. Environ. Res. Public Health 2019, 16, 249. [Google Scholar] [CrossRef] [PubMed]
- Shen, Z.; Kawakami, M. An online visualization tool for Internet-based local townscape design. Comput. Environ. Urban Syst. 2010, 34, 104–116. [Google Scholar] [CrossRef]
- Engel, J.; Döllner, J. Immersive Visualization of Virtual 3D City Models and its Applications in E-Planning. Int. J. E-Plan. Res. 2012, 1, 17–34. [Google Scholar] [CrossRef]
- Jeon, J.Y.; Jo, H.I.; Lee, K. Potential restorative effects of urban soundscapes: Personality traits, temperament, and perceptions of VR urban environments. Landsc. Urban Plan. 2021, 214, 104188. [Google Scholar] [CrossRef]
- Kogan, P.; Arenas, J.P.; Bermejo, F.; Hinalaf, M.; Turra, B. A Green Soundscape Index (GSI): The potential of assessing the perceived balance between natural sound and traffic noise. Sci. Total Environ. 2018, 642, 463–472. [Google Scholar] [CrossRef]
- Puyana-Romero, V.; Maffei, L.; Brambilla, G.; Nuñez-Solano, D. Sound Water Masking to Match a Waterfront Soundscape with the Users’ Expectations: The Case Study of the Seafront in Naples, Italy. Sustainability 2021, 13, 371. [Google Scholar] [CrossRef]
- Lyu, K.; Brambilla, A.; Globa, A.; de Dear, R. An immersive multisensory virtual reality approach to the study of human-built environment interactions. Autom. Constr. 2023, 150, 104836. [Google Scholar] [CrossRef]
- Park, S.H.; Lee, P.J.; Jung, T.; Swenson, A. Effects of the aural and visual experience on psycho-physiological recovery in urban and rural environments. Appl. Acoust. 2020, 169, 107486. [Google Scholar] [CrossRef]
- Hedblom, M.; Gunnarsson, B.; Iravani, B.; Knez, I.; Schaefer, M.; Thorsson, P.; Lundström, J.N. Reduction of physiological stress by urban green space in a multisensory virtual experiment. Sci. Rep. 2019, 9, 10113. [Google Scholar] [CrossRef] [PubMed]
- Van Renterghem, T. Towards explaining the positive effect of vegetation on the perception of environmental noise. Urban For. Urban Green. 2019, 40, 133–144. [Google Scholar] [CrossRef]
- Maffei, L.; Masullo, M.; Pascale, A.; Ruggiero, G.; Romero, V.P. Immersive virtual reality in community planning: Acoustic and visual congruence of simulated vs real world. Sustain. Cities Soc. 2016, 27, 338–345. [Google Scholar] [CrossRef]
- Senese, V.P.; Pascale, A.; Maffei, L.; Cioffi, F.; Sergi, I.; Gnisci, A.; Masullo, M. The Influence of Personality Traits on the Measure of Restorativeness in an Urban Park: A Multisensory Immersive Virtual Reality Study. In Neural Approaches to Dynamics of Signal Exchanges; Springer: Singapore, 2020; pp. 347–357. [Google Scholar] [CrossRef]
- Bazrafshan, M.; Spielhofer, R.; Hayek, U.W.; Kienast, F.; Grêt-Regamey, A. Greater place attachment to urban parks enhances relaxation: Examining affective and cognitive responses of locals and bi-cultural migrants to virtual park visits. Landsc. Urban Plan. 2023, 232, 104650. [Google Scholar] [CrossRef]
- Long, X.; Din, N.C.; Lei, Y.; Mahyuddin, N. The restorative effects of outdoor soundscapes in nursing homes for elderly individuals. Build. Environ. 2023, 242, 110520. [Google Scholar] [CrossRef]
- Parmar, V.; Jana, A. A review of tools and techniques for audio-visual assessment of urbanscape. Discov. Cities 2024, 1, 29. [Google Scholar] [CrossRef]
- Bosman, I.D.V.; Buruk, O.O.; Jørgensen, K.; Hamari, J. The effect of audio on the experience in virtual reality: A scoping review. Behav. Inf. Technol. 2024, 43, 165–199. [Google Scholar] [CrossRef]
- Hong, J.; He, J.; Lam, B.; Gupta, R.; Gan, W.-S. Spatial Audio for Soundscape Design: Recording and Reproduction. Appl. Sci. 2017, 7, 627. [Google Scholar] [CrossRef]
- Serafin, S.; Geronazzo, M.; Erkut, C.; Nilsson, N.C.; Nordahl, R. Sonic interactions in virtual reality: State of the art, current challenges, and future directions. IEEE Comput. Graph. Appl. 2018, 38, 31–43. [Google Scholar] [CrossRef]
- Xu, C.; Oberman, T.; Aletta, F.; Tong, H.; Kang, J. Ecological validity of immersive virtual reality (IVR) techniques for the perception of urban sound environments. Acoustics 2020, 3, 11–24. [Google Scholar] [CrossRef]
- Moher, D.; Liberati, A.; Tetzlaff, J.; Altman, D.G. Preferred Reporting Items for Systematic Reviews and Meta-Analyses: The PRISMA Statement. PLoS Med. 2009, 6, e1000097. [Google Scholar] [CrossRef]
- Maffei, L.; Masullo, M.; Aletta, F.; Di Gabriele, M. The influence of visual characteristics of barriers on railway noise perception. Sci. Total Environ. 2013, 445–446, 41–47. [Google Scholar] [CrossRef] [PubMed]
- Maffei, L.; Iachini, T.; Masullo, M.; Aletta, F.; Sorrentino, F.; Senese, V.P.; Ruotolo, F. The Effects of Vision-Related Aspects on Noise Perception of Wind Turbines in Quiet Areas. Int. J. Environ. Res. Public Health 2013, 10, 1681–1697. [Google Scholar] [CrossRef]
- Annerstedt, M.; Jönsson, P.; Wallergård, M.; Johansson, G.; Karlson, B.; Grahn, P.; Hansen, Å.M.; Währborg, P. Inducing physiological stress recovery with sounds of nature in a virtual reality forest—Results from a pilot study. Physiol. Behav. 2013, 118, 240–250. [Google Scholar] [CrossRef]
- Sahai, A.; Wefers, F.; Pick, S.; Stumpf, E.; Vorländer, M.; Kuhlen, T. Interactive simulation of aircraft noise in aural and visual virtual environments. Appl. Acoust. 2016, 101, 24–38. [Google Scholar] [CrossRef]
- Jiang, L.; Masullo, M.; Maffei, L. Effect of odour on multisensory environmental evaluations of road traffic. Environ. Impact Assess. Rev. 2016, 60, 126–133. [Google Scholar] [CrossRef]
- Puyana-Romero, V.; Lopez-Segura, L.S.; Maffei, L.; Hernández-Molina, R.; Masullo, M. Interactive Soundscapes: 360°-Video Based Immersive Virtual Reality in a Tool for the Participatory Acoustic Environment Evaluation of Urban Areas. Acta Acust. United Acust. 2017, 103, 574–588. [Google Scholar] [CrossRef]
- Sanchez, G.M.E.; Van Renterghem, T.; Sun, K.; De Coensel, B.; Botteldooren, D. Using Virtual Reality for assessing the role of noise in the audio-visual design of an urban public space. Landsc. Urban Plan. 2017, 167, 98–107. [Google Scholar] [CrossRef]
- Yu, T.; Behm, H.; Bill, R.; Kang, J. Audio-visual perception of new wind parks. Landsc. Urban Plan. 2017, 165, 1–10. [Google Scholar] [CrossRef]
- Jiang, L.; Masullo, M.; Maffei, L.; Meng, F.; Vorländer, M. A demonstrator tool of web-based virtual reality for participatory evaluation of urban sound environment. Landsc. Urban Plan. 2018, 170, 276–282. [Google Scholar] [CrossRef]
- Hedblom, M.; Gunnarsson, B.; Schaefer, M.; Knez, I.; Thorsson, P.; Lundström, J.N. Sounds of Nature in the City: No Evidence of Bird Song Improving Stress Recovery. Int. J. Environ. Res. Public Health 2019, 16, 1390. [Google Scholar] [CrossRef]
- Sun, K.; De Coensel, B.; Filipan, K.; Aletta, F.; Van Renterghem, T.; De Pessemier, T.; Joseph, W.; Botteldooren, D. Classification of soundscapes of urban public open spaces. Landsc. Urban Plan. 2019, 189, 139–155. [Google Scholar] [CrossRef]
- Sacchelli, S.; Favaro, M. A Virtual-Reality and Soundscape-Based Approach for Assessment and Management of Cultural Ecosystem Services in Urban Forest. Forests 2019, 10, 731. [Google Scholar] [CrossRef]
- Hong, J.Y.; Lam, B.; Ong, Z.-T.; Ooi, K.; Gan, W.-S.; Kang, J.; Yeong, S.; Lee, I.; Tan, S.-T. The effects of spatial separations between water sound and traffic noise sources on soundscape assessment. Build. Environ. 2020, 167, 106423. [Google Scholar] [CrossRef]
- Jo, H.I.; Jeon, J.Y. Effect of the appropriateness of sound environment on urban soundscape assessment. Build. Environ. 2020, 179, 106975. [Google Scholar] [CrossRef]
- Lindquist, M.; Maxim, B.; Proctor, J.; Dolins, F. The effect of audio fidelity and virtual reality on the perception of virtual greenspace. Landsc. Urban Plan. 2020, 202, 103884. [Google Scholar] [CrossRef]
- Jo, H.I.; Jeon, J.Y. The influence of human behavioral characteristics on soundscape perception in urban parks: Subjective and observational approaches. Landsc. Urban Plan. 2020, 203, 103890. [Google Scholar] [CrossRef]
- Kern, A.C.; Ellermeier, W. Audio in VR: Effects of a Soundscape and Movement-Triggered Step Sounds on Presence. Front. Robot. AI 2020, 7, 20. [Google Scholar] [CrossRef]
- Meenar, M.; Kitson, J. Using Multi-Sensory and Multi-Dimensional Immersive Virtual Reality in Participatory Planning. Urban Sci. 2020, 4, 34. [Google Scholar] [CrossRef]
- Andolina, S.; Hsieh, Y.-T.; Kalkofen, D.; Nurminen, A.; Cabral, D.; Spagnolli, A.; Gamberini, L.; Morrison, A.; Schmalstieg, D.; Jacucci, G. Designing for Mixed Reality Urban Exploration. Interact. Des. Archit. 2021, 48, 33–49. [Google Scholar] [CrossRef]
- Berger, M.; Bill, R. Combining VR Visualization and Sonification for Immersive Exploration of Urban Noise Standards. Multimodal Technol. Interact. 2019, 3, 34. [Google Scholar] [CrossRef]
- Meuwese, D.; Dijkstra, K.; Maas, J.; Koole, S.L. Beating the blues by viewing Green: Depressive symptoms predict greater restoration from stress and negative affect after viewing a nature video. J. Environ. Psychol. 2021, 75, 101594. [Google Scholar] [CrossRef]
- Jo, H.I.; Jeon, J.Y. Perception of urban soundscape and landscape using different visual environment reproduction methods in virtual reality. Appl. Acoust. 2022, 186, 108498. [Google Scholar] [CrossRef]
- Jo, H.I.; Jeon, J.Y. Compatibility of quantitative and qualitative data-collection protocols for urban soundscape evaluation. Sustain. Cities Soc. 2021, 74, 103259. [Google Scholar] [CrossRef]
- Jo, H.I.; Jeon, J.Y. Urban soundscape categorization based on individual recognition, perception, and assessment of sound environments. Landsc. Urban Plan. 2021, 216, 104241. [Google Scholar] [CrossRef]
- Li, Z.; Ba, M.; Kang, J. Physiological indicators and subjective restorativeness with audio-visual interactions in urban soundscapes. Sustain. Cities Soc. 2021, 75, 103360. [Google Scholar] [CrossRef]
- Jo, H.I.; Jeon, J.Y. Overall environmental assessment in urban parks: Modelling audio-visual interaction with a structural equation model based on soundscape and landscape indices. Build. Environ. 2021, 204, 108166. [Google Scholar] [CrossRef]
- Masullo, M.; Maffei, L.; Pascale, A.; Senese, V.P.; De Stefano, S.; Chau, C.K. Effects of Evocative Audio-Visual Installations on the Restorativeness in Urban Parks. Sustainability 2021, 13, 8328. [Google Scholar] [CrossRef]
- Ha, J.; Kim, H.J. The restorative effects of campus landscape biodiversity: Assessing visual and auditory perceptions among university students. Urban For. Urban Green. 2021, 64, 127259. [Google Scholar] [CrossRef]
- Jaalama, K.; Rantanen, T.; Julin, A.; Fagerholm, N.; Keitaanniemi, A.; Virtanen, J.-P.; Handolin, H.; Vaaja, M.; Hyyppä, H. Auditing an urban park deck with 3D geovisualization—A comparison of in-situ and VR walk-along interviews. Urban For. Urban Green. 2022, 76, 127712. [Google Scholar] [CrossRef]
- Llorca-Bofí, J.; Dreier, C.; Heck, J.; Vorländer, M. Urban Sound Auralization and Visualization Framework—Case Study at IHTApark. Sustainability 2022, 14, 2026. [Google Scholar] [CrossRef]
- Oberfeld, D.; Wessels, M.; Büttner, D. Overestimated time-to-collision for quiet vehicles: Evidence from a study using a novel audiovisual virtual-reality system for traffic scenarios. Accid. Anal. Prev. 2022, 175, 106778. [Google Scholar] [CrossRef]
- Puyana-Romero, V.; Cueto, J.L.; Caizapasto-Sánchez, I.S.; Marcillo-Calispa, G.E. Assessing the Soundscape Appropriateness in the Vicinity of a Heliport in an Urban Park of Quito (Ecuador) Using Immersive Audio-Visual Scenarios. Int. J. Environ. Res. Public Health 2022, 19, 6116. [Google Scholar] [CrossRef]
- Ünal, A.B.; Pals, R.; Steg, L.; Siero, F.W.; van der Zee, K.I. Is virtual reality a valid tool for restorative environments research? Urban For. Urban Green. 2022, 74, 127673. [Google Scholar] [CrossRef]
- Wessels, M.; Kröling, S.; Oberfeld, D. Audiovisual time-to-collision estimation for accelerating vehicles: The acoustic signature of electric vehicles impairs pedestrians’ judgments. Transp. Res. Part F Traffic Psychol. Behav. 2022, 91, 191–212. [Google Scholar] [CrossRef]
- Ojala, A.; Neuvonen, M.; Kurkilahti, M.; Leinikka, M.; Huotilainen, M.; Tyrväinen, L. Short virtual nature breaks in the office environment can restore stress: An experimental study. J. Environ. Psychol. 2022, 84, 101909. [Google Scholar] [CrossRef]
- Ch, N.A.N.; Ansah, A.A.; Katrahmani, A.; Burmeister, J.; Kun, A.L.; Mills, C.; Shaer, O.; Lee, J.D. Virtual nature experiences and mindfulness practices while working from home during COVID-19: Effects on stress, focus, and creativity. Int. J. Hum. Comput. Stud. 2023, 171, 102982. [Google Scholar] [CrossRef] [PubMed]
- Hsieh, C.-H.; Yang, J.-Y.; Huang, C.-W.; Chin, W.C.B. The effect of water sound level in virtual reality: A study of restorative benefits in young adults through immersive natural environments. J. Environ. Psychol. 2023, 88, 102012. [Google Scholar] [CrossRef]
- Dongas, R.; Grace, K.; Gillespie, S.; Hoggenmueller, M.; Tomitsch, M.; Worrall, S. Virtual Urban Field Studies: Evaluating Urban Interaction Design Using Context-Based Interface Prototypes. Multimodal Technol. Interact. 2023, 7, 82. [Google Scholar] [CrossRef]
- Mioni, G.; Pazzaglia, F. Time perception in naturalistic and urban immersive virtual reality environments. J. Environ. Psychol. 2023, 90, 102105. [Google Scholar] [CrossRef]
- Weibel, R.P.; Kerr, J.I.; Naegelin, M.; Ferrario, A.; Schinazi, V.R.; La Marca, R.; Hoelscher, C.; Nater, U.M.; von Wangenheim, F. Virtual reality-supported biofeedback for stress management: Beneficial effects on heart rate variability and user experience. Comput. Human Behav. 2023, 141, 107607. [Google Scholar] [CrossRef]
- Gao, H.; Liu, F.; Kang, J.; Wu, Y.; Xue, Y. The relationship between the perceptual experience of a waterfront-built environment and audio-visual indicators. Appl. Acoust. 2023, 212, 109550. [Google Scholar] [CrossRef]
- Jeon, J.Y.; Jo, H.I.; Lee, K. Psycho-physiological restoration with audio-visual interactions through virtual reality simulations of soundscape and landscape experiences in urban, waterfront, and green environments. Sustain. Cities Soc. 2023, 99, 104929. [Google Scholar] [CrossRef]
- Yanaky, R.; Tyler, D.; Guastavino, C. City Ditty: An Immersive Soundscape Sketchpad for Professionals of the Built Environment. Appl. Sci. 2023, 13, 1611. [Google Scholar] [CrossRef]
- Zhou, Z.; Ye, X.; Chen, J.; Fan, X.; Kang, J. Effect of visual landscape factors on soundscape evaluation in old residential areas. Appl. Acoust. 2024, 215, 109708. [Google Scholar] [CrossRef]
- Meng, L.; Li, S.; Zhang, X. Assessing biodiversity’s impact on stress and affect from urban to conservation areas: A virtual reality study. Ecol. Indic. 2024, 158, 111532. [Google Scholar] [CrossRef]
- Chen, D.; Yin, J.; Yu, C.-P.; Sun, S.; Gabel, C.; Spengler, J.D. Physiological and psychological responses to transitions between urban built and natural environments using the cave automated virtual environment. Landsc. Urban Plan. 2024, 241, 104919. [Google Scholar] [CrossRef]
- Al Shawabkeh, R.; Arar, M. The role of virtual reality in improving neighborhood park design: A comparative study of virtual reality and traditional approaches. Int. J. Geoherit. Parks 2024, 12, 75–97. [Google Scholar] [CrossRef]
- Młynarczyk, D.; Wiciak, J. Virtual Reality Technology in Analysis of the Sarek National Park Soundscape in Sweden. Arch. Acoust. 2024, 49, 319–329. [Google Scholar] [CrossRef]
- Yang, M.; Heimes, A.; Vorländer, M.; Schulte-Fortkamp, B. Comparison of subjective evaluations in virtual and real environments for soundscape research. J. Acoust. Soc. Am. 2024, 155, 3715–3729. [Google Scholar] [CrossRef]
- Kawai, C.; Georgiou, F.; Pieren, R.; Tobias, S.; Mavros, P.; Schäffer, B. Investigating effect chains from cognitive and noise-induced short-term stress build-up to restoration in an urban or nature setting using 360° VR. J. Environ. Psychol. 2024, 100, 102466. [Google Scholar] [CrossRef]
- Kari, T.; Ojala, A.; Kurkilahti, M.; Tyrväinen, L. Comparison between three different delivery technologies of virtual nature on psychological state related to general stress recovery: An experimental study. J. Environ. Psychol. 2024, 100, 102452. [Google Scholar] [CrossRef]
- Bulmer, D. How can computer simulated visualizations of the built environment facilitate better public participation in the planning process? Online Plan. J. 2001, 11, 1–43. [Google Scholar]
- Belaroussi, R.; Issa, E.; Cameli, L.; Lantieri, C.; Adelé, S. Exploring Virtual Environments to Assess the Quality of Public Spaces. Algorithms 2024, 17, 124. [Google Scholar] [CrossRef]
- Fastl, H. Audio-Visual Interactions in Loudness Evaluation. 2004. Available online: https://api.semanticscholar.org/CorpusID:14830337 (accessed on 25 January 2025).
- White, M.P.; Elliott, L.R.; Gascon, M.; Roberts, B.; Fleming, L.E. Blue space, health and well-being: A narrative overview and synthesis of potential benefits. Environ. Res. 2020, 191, 110169. [Google Scholar] [CrossRef] [PubMed]
- Pheasant, R.J.; Watts, G.R.; Horoshenkov, K.V. Validation of a Tranquillity Rating Prediction Tool. Acta Acust. United Acust. 2009, 95, 1024–1031. [Google Scholar] [CrossRef]
- Watts, G.; Marafa, L. Validation of the Tranquillity Rating Prediction Tool (TRAPT): Comparative studies in UK and Hong Kong. Noise Mapp. 2017, 4, 67–74. [Google Scholar] [CrossRef]
- ISO/TS 12913-2; 2018 Acoustics—Soundscape—Part 2: Data Collection and Reporting Requirements. International Organization for Standardization: Geneva, Switzerland, 2018.
- Llorca, J.; Zapata, H.; Alba, J.; Redondo, E.; Fonseca, D. Evaluation between Virtual Acoustic Model and Real Acoustic Scenarios for Urban Representation. In From Natural to Artificial Intelligence—Algorithms and Applications; IntechOpen: Houston, TX, USA, 2018. [Google Scholar] [CrossRef]
- Masullo, M.; Maffei, L. The multidisciplinary integration of knowledge, approaches and tools: Toward the sensory human experience centres. Vib. Phys. Syst. 2022, 33, 2022108. [Google Scholar] [CrossRef]
- Kaplan, R.; Kaplan, S. The Experience of Nature: A Psychological Perspective; Cambridge University Press: New York, NY, USA, 1989. [Google Scholar]
- Ulrich, R.S.; Simons, R.F.; Losito, B.D.; Fiorito, E.; Miles, M.A.; Zelson, M. Stress recovery during exposure to natural and urban environments. J. Environ. Psychol. 1991, 11, 201–230. [Google Scholar] [CrossRef]
- Pals, R.; Steg, L.; Siero, F.W.; van der Zee, K.I. Development of the PRCQ: A measure of perceived restorative characteristics of zoo attractions. J. Environ. Psychol. 2009, 29, 441–449. [Google Scholar] [CrossRef]
- Payne, S.R. The production of a Perceived Restorativeness Soundscape Scale. Appl. Acoust. 2013, 74, 255–263. [Google Scholar] [CrossRef]
- Parsons, T.D. Virtual Reality for Enhanced Ecological Validity and Experimental Control in the Clinical, Affective and Social Neurosciences. Front. Hum. Neurosci. 2015, 9, 660. [Google Scholar] [CrossRef]
- Guastavino, C.; Katz, B.F.G.; Polack, J.-D.; Levitin, D.J.; Dubois, D. Ecological Validity of soundscape reproduction. Acta Acust. 2004, 9, 333–341. [Google Scholar]
- Gibson, J.J. The Ecological Approach to Visual Perception; Psychology Press: East Sussex, UK, 2014. [Google Scholar] [CrossRef]
- Slater, M. Place illusion and plausibility can lead to realistic behaviour in immersive virtual environments. Philos. Trans. R. Soc. B Biol. Sci. 2009, 364, 3549–3557. [Google Scholar] [CrossRef]
- Slater, M.; Banakou, D.; Beacco, A.; Gallego, J.; Macia-Varela, F.; Oliva, R. A Separate Reality: An Update on Place Illusion and Plausibility in Virtual Reality. Front. Virtual Real. 2022, 3, 914392. [Google Scholar] [CrossRef]
- Gonçalves, A.; Montoya, M.F.; Llorens, R.; Badia, S.B.I. A virtual reality bus ride as an ecologically valid assessment of balance: A feasibility study. Virtual Real. 2023, 27, 109–117. [Google Scholar] [CrossRef]
- Gök Tokgöz, Ö.; Altınsoy, M.E. Comparison of Soundscape Assessment Results On-Site and in the Laboratory. In Proceedings of the 10th Convention of the European Acoustics Association, Turin, Italy, 11–15 September 2023; pp. 1055–1061. [Google Scholar] [CrossRef]
- Gök Tokgöz, Ö.; Altinsoy, M.E. Retesting of Soundscape Field Studies in A Multimodal Measurement Laboratory Setting. In Proceedings of the DAGA 2022—48th Jahrentaggung für Akust, Stuttgart, Germany, 20–23 March 2022. [Google Scholar]
- Elmezeny, A.; Edenhofer, N.; Wimmer, J. Immersive Storytelling in 360-Degree Videos: An Analysis of Interplay Between Narrative and Technical Immersion. J. Virtual Worlds Res. 2018, 11, 1. [Google Scholar] [CrossRef]
- Mouratidis, K.; Hassan, R. Contemporary versus traditional styles in architecture and public space: A virtual reality study with 360-degree videos. Cities 2020, 97, 102499. [Google Scholar] [CrossRef]
- Kang, J.; Aletta, F.; Gjestland, T.T.; Brown, L.A.; Botteldooren, D.; Schulte-Fortkamp, B.; Lercher, P.; van Kamp, I.; Genuit, K.; Fiebig, A.; et al. Ten questions on the soundscapes of the built environment. Build. Environ. 2016, 108, 284–294. [Google Scholar] [CrossRef]
- Vorländer, M. Auralization; Springer: Berlin/Heidelberg, Germany, 2008. [Google Scholar] [CrossRef]
- Llorca-Bofí, J.; Vorländer, M. Multi-Detailed 3D Architectural Framework for Sound Perception Research in Virtual Reality. Front. Built Environ. 2021, 7, 687237. [Google Scholar] [CrossRef]
- Schäfer, P.; Reich, L.; Vorländer, M. Linking atmospheric and urban auralization models. Acta Acust. 2022, 6, 28. [Google Scholar] [CrossRef]
- Patrick, E.; Cosgrove, D.; Slavkovic, A.; Rode, J.A.; Verratti, T.; Chiselko, G. Using a large projection screen as an alternative to head-mounted displays for virtual environments. In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, The Hague, The Netherlands, 1–6 April 2000; pp. 478–485. [Google Scholar]
- Girolamo, H.J. Decade of progress 1991–2001: HMD technology ready for platform integration. In Proceedings of the Aerospace/Defense Sensing, Simulation, and Controls, Orlando, FL, USA, 16–20 April 2001; Volume 4361, pp. 43–70. [Google Scholar] [CrossRef]
- Morel, M.; Bideau, B.; Lardy, J.; Kulpa, R. Advantages and limitations of virtual reality for balance assessment and rehabilitation. Neurophysiol. Clin. Neurophysiol. 2015, 45, 315–326. [Google Scholar] [CrossRef] [PubMed]
- Cruz-Neira, C.; Sandin, D.J.; DeFanti, T.A.; Kenyon, R.V.; Hart, J.C. The CAVE: Audio visual experience automatic virtual environment. Commun. ACM 1992, 35, 64–73. [Google Scholar] [CrossRef]
- Farina, A.; Tronchin, L.; Bevilacqua, A.; Armelloni, E.; Merli, F.; Dolci, M. ‘SIPARIO SOUNDS’: A New Omnidirectional Loudspeaker for MIMO Auralisation. In Proceedings of the e-Forum Acusticum, Virtual, 7–11 December 2020; pp. 567–573. [Google Scholar]
- Progetto Sipario. About Progetto Sipario. Available online: https://www.progettosipario.org/about-en/ (accessed on 25 August 2025).
- Klein, E.; Swan, J.E.; Schmidt, G.S.; Livingston, M.A.; Staadt, O.G. Measurement Protocols for Medium-Field Distance Perception in Large-Screen Immersive Displays. In Proceedings of the 2009 IEEE Virtual Reality Conference, Lafayette, LA, USA, 14–18 March 2009; pp. 107–113. [Google Scholar] [CrossRef]
- He, J. Spatial Audio Reproduction with Primary Ambient Extraction; Springer: Singapore, 2017. [Google Scholar] [CrossRef]
- Altinsoy, M.E. The Quality of Auditory-Tactile Virtual Environments. J. Audio Eng. Soc. 2012, 60, 38–46. [Google Scholar]
- ISO12913-3; 2019 Part 3: Data Analysis. International Organization for Standardization: Geneva, Switzerland, 2019.
- Aletta, F.; Xiao, J. What are the Current Priorities and Challenges for (Urban) Soundscape Research? Challenges 2018, 9, 16. [Google Scholar] [CrossRef]
- Gök Tokgöz, Ö. The Effects of User Experience on the Questionnaire to Detection of the Soundscape of Historical Areas—Example of Eskisehir Factories Region. In Proceedings of the INTER-NOISE and NOISE-CON Congress and Conference Proceedings, InterNoise22, Glasgow, Scotland, 21–24 August 2022; Pages 999–1999. pp. 1708–1716. [Google Scholar] [CrossRef]
- Souchet, A.D.; Philippe, S.; Lourdeaux, D.; Leroy, L. Measuring Visual Fatigue and Cognitive Load via Eye Tracking while Learning with Virtual Reality Head-Mounted Displays: A Review. Int. J. Hum.–Comput. Interact. 2022, 38, 801–824. [Google Scholar] [CrossRef]
- Hirzle, T.; Fischbach, F.; Karlbauer, J.; Jansen, P.; Gugenheimer, J.; Rukzio, E.; Bulling, A. Understanding, Addressing, and Analysing Digital Eye Strain in Virtual Reality Head-Mounted Displays. ACM Trans. Comput. Interact. 2022, 29, 1–80. [Google Scholar] [CrossRef]
- Chang, E.; Kim, H.T.; Yoo, B. Virtual Reality Sickness: A Review of Causes and Measurements. Int. J. Human–Computer Interact. 2020, 36, 1658–1682. [Google Scholar] [CrossRef]
- Descheneaux, C.R.; Reinerman-Jones, L.; Moss, J.; Krum, D.; Hudson, I. Negative Effects Associated with HMDs in Augmented and Virtual Reality. In Proceedings of the International Conference on Human-Computer Interaction, Copenhagen, Denmark, 19–24 July 2020; pp. 410–428. [Google Scholar] [CrossRef]
- Cucher, D.J.; Kovacs, M.S.; Clark, C.E.; Hu, C.K.P. Virtual reality consumer product injuries: An analysis of national emergency department data. Injury 2023, 54, 1396–1399. [Google Scholar] [CrossRef] [PubMed]
- Lavoie, R.; Main, K.; King, C.; King, D. Virtual experience, real consequences: The potential negative emotional consequences of virtual reality gameplay. Virtual Real. 2021, 25, 69–81. [Google Scholar] [CrossRef]
- Conner, N.O.; Freeman, H.R.; Jones, J.A.; Luczak, T.; Carruth, D.; Knight, A.C.; Chander, H. Virtual Reality Induced Symptoms and Effects: Concerns, Causes, Assessment & Mitigation. Virtual Worlds 2022, 1, 130–146. [Google Scholar] [CrossRef]
- Kourtesis, P.; Collina, S.; Doumas, L.A.A.; MacPherson, S.E. Validation of the Virtual Reality Neuroscience Questionnaire: Maximum Duration of Immersive Virtual Reality Sessions Without the Presence of Pertinent Adverse Symptomatology. Front. Hum. Neurosci. 2019, 13, 417. [Google Scholar] [CrossRef]
- Carnegie, K.; Rhee, T. Reducing Visual Discomfort with HMDs Using Dynamic Depth of Field. IEEE Comput. Graph. Appl. 2015, 35, 34–41. [Google Scholar] [CrossRef]
- Nalivaiko, E.; Davis, S.L.; Blackmore, K.L.; Vakulin, A.; Nesbitt, K.V. Cybersickness provoked by head-mounted display affects cutaneous vascular tone, heart rate and reaction time. Physiol. Behav. 2015, 151, 583–590. [Google Scholar] [CrossRef]
- Saredakis, D.; Szpak, A.; Birckhead, B.; Keage, H.A.D.; Rizzo, A.; Loetscher, T. Factors Associated With Virtual Reality Sickness in Head-Mounted Displays: A Systematic Review and Meta-Analysis. Front. Hum. Neurosci. 2020, 14, 96. [Google Scholar] [CrossRef]
- Akizuki, H.; Uno, A.; Arai, K.; Morioka, S.; Ohyama, S.; Nishiike, S.; Tamura, K.; Takeda, N. Effects of immersion in virtual reality on postural control. Neurosci. Lett. 2005, 379, 23–26. [Google Scholar] [CrossRef]
- So, R.H.Y.; Lo, W.T.; Ho, A.T.K. Effects of Navigation Speed on Motion Sickness Caused by an Immersive Virtual Environment. Hum. Factors J. Hum. Factors Ergon. Soc. 2001, 43, 452–461. [Google Scholar] [CrossRef] [PubMed]
- Martinez, A.; Paganelli, A.I.; Raposo, A. Analysing Balance Loss in VR Interaction with HMDs. J. Interact. Syst. 2018, 9, 68–81. [Google Scholar] [CrossRef]
- Tseng, W.-J. Understanding Physical Breakdowns in Virtual Reality. In Proceedings of the Extended Abstracts of the 2023 CHI Conference on Human Factors in Computing Systems, Hamburg, Germany, 23–28 April 2023; pp. 1–5. [Google Scholar] [CrossRef]
- Marwecki, S.; Brehm, M.; Wagner, L.; Cheng, L.-P.; Floyd, F.; Baudisch, P. VirtualSpace—Overloading Physical Space with Multiple Virtual Reality Users. In Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, Montreal, QC, Canada, 21–26 April 2018; pp. 1–10. [Google Scholar] [CrossRef]
- Plomin, J.; Schweidler, P.; Oehme, A. Virtual reality check: A comparison of virtual reality, screen-based, and real world settings as research methods for HRI. Front. Robot. AI 2023, 10, 1156715. [Google Scholar] [CrossRef] [PubMed]
- Azher, S.; Cervantes, A.; Marchionni, C.; Grewal, K.; Marchand, H.; Harley, J.M. Virtual Simulation in Nursing Education: Headset Virtual Reality and Screen-based Virtual Simulation Offer A Comparable Experience. Clin. Simul. Nurs. 2023, 79, 61–74. [Google Scholar] [CrossRef]
- Şentop Dümen, A.; Şaher, K. Noise annoyance during COVID-19 lockdown: A research of public opinion before and during the pandemic. J. Acoust. Soc. Am. 2020, 148, 3489–3496. [Google Scholar] [CrossRef]
- GökTokgöz, Ö.; Dogan Iseri, H.A.; Özcevik Bilen, A. Evaluation of the Changing Urban Soundscape in Turkey during COVID-19 Pandemic through Online Survey. A/Z ITU J. Fac. Archit. 2023, 20, 133–146. [Google Scholar] [CrossRef]
- Barbanti, R. Listening to the Landscape for an Ecosophic Aesthetic. Paragraph 2018, 41, 62–78. [Google Scholar] [CrossRef]
- Schaeffer, P. A la Recherche d’une Musique Concrète. 1952. Available online: https://api.semanticscholar.org/CorpusID:190540839 (accessed on 30 August 2025).
- Schaeffer, P. Traité des Objets Musicaux. 1966. Available online: https://api.semanticscholar.org/CorpusID:192131994 (accessed on 30 August 2025).
- LaBelle, B. Acoustic Territories, Second Edition: Sound Culture and Everyday Life; Bloomsbury Academic & Professional: London, UK, 2019. [Google Scholar]
- LaBelle, B. Background Noise: Perspectives on Sound Art; Bloomsbury Academic: London, UK, 2016. [Google Scholar]
- Westerkamp, H. Linking soundscape composition and acoustic ecology. Organised Sound 2002, 7, 51–56. [Google Scholar] [CrossRef]
- Erlmann, V. Hearing Cultures: Essays on Sound, Listening, and Modernity; Routledge: London, UK; Taylor & Taylor Group: Abingdon, UK, 2020. [Google Scholar]
- O’Keeffe, L. Thinking Through New Methodologies. Sounding Out the City With Teenagers. Qual. Sociol. Rev. 2015, 11, 6–32. [Google Scholar] [CrossRef]
- Lu, Y.; Lau, S.-K. Soundscape evaluation method based on participatory design. Proc. Mtgs. Acoust. 2023, 51, 040005. [Google Scholar] [CrossRef]
Authors (Published Year) | Research Goals | Field Selections | |||||
---|---|---|---|---|---|---|---|
Urban Design and Planing | Analysis of the Urban Elements | Restorative Effect | Ecological Validity | Green Areas | Roadside and Transportation Corridors | Other | |
Engel and Döllner [17] | x | x | x | ||||
Maffei et al. [35] | x | x | |||||
Ruotolo et al. [10] | x | x | |||||
Maffei et al. [36] | x | x | |||||
Annerstedt et al. [37] | x | x | |||||
Shai et al. [38] | x | x | |||||
Jiang et al. [39] | x | x | |||||
Maffei et al. [25] | x | x | |||||
Puyana-Romero et al. [40] | x | x | x | ||||
Echevarria Sanchez et al. [41] | x | x | |||||
Yu et al. [42] | x | x | |||||
Liu and Kang [12] | x | x | |||||
Jiang et al. [43] | x | x | |||||
Jiang et al. [11] | x | x | |||||
Lugten et al. [14] | x | x | |||||
Taghipour et al. [15] | x | x | |||||
Hedblom et al. [23] | x | x | x | ||||
Hedblom et al. [44] | x | x | |||||
Sun et al. [45] | x | x | x | x | |||
Jeon and Jo [3] | x | x | x | x | |||
Sacchelli and Favaro [46] | x | x | |||||
Hong et al. [47] | x | x | |||||
Jo and Jeon [48] | x | x | x | x | |||
Lindquist et al. [49] | x | x | x | ||||
Jo and Jeon [50] | x | x | |||||
Kern and Ellermeier [51] | x | x | |||||
Meenar and Kitson [52] | x | x | x | ||||
Park et al. [22] | x | x | |||||
Senese et al. [26] | x | x | |||||
Andolina et al. [53] | x | x | |||||
Berger and Bill [54] | x | x | |||||
Meuwese et al. [55] | x | x | x | ||||
Jo and Jeon [56,57,58] | x | x | x | x | |||
Li et al. [59] | x | x | |||||
Jo and Jeon [60] | x | x | |||||
Jeon et al. [18] | x | x | x | x | |||
Masullo et al. [61] | x | x | x | ||||
Puyana-Romero et al. [20] | x | x | |||||
Ha and Kim [62] | x | x | |||||
Jaalama et al. [63] | x | x | x | ||||
Llorca-Bofí et al. [64] | x | x | |||||
Bazrafshan et al. [27] | x | x | |||||
Oberfeld et al. [65] | x | x | |||||
Puyana-Romero et al. [66] | x | x | |||||
Ünal et al. [67] | x | x | x | ||||
Wessels et al. [68] | x | x | |||||
Lu et al. [5] | x | x | x | ||||
Ojala et al. [69] | x | x | |||||
Ch et al. [70] | x | x | |||||
Hsieh et al. [71] | x | x | |||||
Dongas et al. [72] | x | x | x | ||||
Mioni and Pazzaglia [73] | x | x | x | ||||
Weibel et al. [74] | x | x | |||||
Gao et al. [75] | x | x | |||||
Jeon et al. [76] | x | x | x | x | |||
Lyu et al. [21] | x | x | |||||
Long et al. [28] | x | x | x | x | |||
Yanaky et al. [77] | x | x | x | ||||
Yilmaz et al. [13] | x | x | |||||
Zhou et al. [78] | x | x | |||||
Meng et al. [79] | x | x | |||||
Chen et al. [80] | x | x | x | x | |||
Shawabkeh and Arar [81] | x | x | |||||
Młynarczyk and Wiciak [82] | x | x | |||||
Yang et al. [83] | x | x | |||||
Kawai et al. [84] | x | x | x | ||||
Kari et al. [85] | x | x |
Themes | Authors | Participants | Physical and Psychological Factors |
---|---|---|---|
Basic methods | Annerstedt et al. [37] | 30 | Cardiovascular data and saliva cortisol data, The Trier Social Stress Test (TSST) |
Park et al. [22] | 32 | HR, RR, EDA, fEMG-CS, fEMG-Zygo, PRSS | |
Meuwese et al. [55] | 57 | Epidemiological Studies Depression Scale (CES-D) | |
Ünal et al. [67] | 23 | PRCQ (fascination, novelty, escape, and coherence) | |
Ojala et al. [69] | 39 | HRV, PANAS | |
Ch et al. [70] | 20 | The Remote Associates Test (RAT) and the Alternate Uses Task (AUT) | |
Mioni and Pazzaglia [73] | 52 | The Self-Assessment Manikin (SAM), The Subjective Time Questionnaire (STQ), PRCQ | |
Kawai et al. [84] | 84 | NCPCT = Necker Cube Perspective Change Test; SCL = skin conductance level | |
Natural Audiovisual Components | Hedblom et al. [23] | 117 | SCL |
Masullo et al. [61] | 48 | ART(Fascination, Being-Away, Extent and Compatibility) | |
Ha and Kim [62] | 319 | RSS and the Short Form of The Profile of Mood States (POMS-SF) | |
Hsieh et al. [71] | 45 | HR, Total autonomic nerve activity (SDNN), Sympathetic (low frequency-power, LF), Parasympathetic (high frequency-power, HF), Low-to-high frequency-power ratio (LF/HF) | |
Gao et al. [75] | 50 | Short-version revised restoration scale(SRRS) | |
Jeon et al. [76] | 60 | HRV and Electroencephalogram (EEG) PRSS | |
Meng et al. [79] | 90 | SCL and Significant Skin Conductance Responses (nSCR), PANAS | |
Various Technologies | Hedblom et al. [44] | 154 | SCL, Visual, Auditory, and Olfactory pleasantness |
Li et al. [59] | 30 | HR, HRV, HF-HRV, α-EEG, ST, β-EEG and RR | |
Weibel et al. [74] | 107 | Heart rate variability biofeedback (HRV-BF) | |
Chen et al. [80] | 171 | HRV, HR, and SCL, POMs dimensions Scores | |
Kari et al. [85] | 62 | The ROS (Six-item Restoration Outcome Scale), SVS(Subjective Vitality Scale), PANAS, and SSI (stress-symptoms item) | |
Individual Differences | Senese et al. [26] | 95 | ART (Fascination, Being-Away, Extent, and Compatibility) NEO Five-Factor Inventory |
Bazrafshan et al. [27] | 60 | EDA, Questions related to place attachment | |
Long et al. [28] | 29 | SCL, HR, HRV, EDA, Respiratory rate (RF), and Blink frequency (BF), Emotional level, and attention |
Production of Visual Content | |
---|---|
Photo and Video recording | 3D software |
Photo [23,42,44,79] | Google SketchUp [10,11,13,15,25,35,64] |
360-degree video [3,14,18,20,22,27,28,40,45,48,50,57,66,71,72,76,78,80,82] | 3ds Max [26,61,65,67,68] |
Unity [5,13,41,43,51,54,77,83] | |
Unreal Engine [26,61,64] | |
Bryga 3D [63] | |
Rhinoceros 3D [21] | |
Production of Audio Content | |
Binaural recordings [14,21,22,23,25,35,42,45,51,65,66,106] | Auralization [5,11,13,41,43,54,64,67,68,77,83] |
Ambisonic recordings [3,20,27,28,48,57,72,76,82] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gök Tokgöz, Ö.; Engel, M.S.; Othmani, C.; Altinsoy, M.E. Virtual Reality Application in Evaluating the Soundscape in Urban Environment: A Systematic Review. Acoustics 2025, 7, 68. https://doi.org/10.3390/acoustics7040068
Gök Tokgöz Ö, Engel MS, Othmani C, Altinsoy ME. Virtual Reality Application in Evaluating the Soundscape in Urban Environment: A Systematic Review. Acoustics. 2025; 7(4):68. https://doi.org/10.3390/acoustics7040068
Chicago/Turabian StyleGök Tokgöz, Özlem, Margret Sibylle Engel, Cherif Othmani, and M. Ercan Altinsoy. 2025. "Virtual Reality Application in Evaluating the Soundscape in Urban Environment: A Systematic Review" Acoustics 7, no. 4: 68. https://doi.org/10.3390/acoustics7040068
APA StyleGök Tokgöz, Ö., Engel, M. S., Othmani, C., & Altinsoy, M. E. (2025). Virtual Reality Application in Evaluating the Soundscape in Urban Environment: A Systematic Review. Acoustics, 7(4), 68. https://doi.org/10.3390/acoustics7040068