- Article
Spatial Sound Modeling and Optimization of Flight Simulator with Multiple Off-Center Listening Positions
- Yang Yang,
- Shuling Dai and
- Xiaoyong Lei
- + 1 author
Accurate spatial sound localization is critical in flight simulators for enhancing situational awareness and pilot training effectiveness, particularly for diagnosing severe faults like engine surge which emit directional sound cues. However, existing spatial audio systems are primarily optimized for a single central listening position, failing to provide consistent localization accuracy for pilots seated in naturally off-center positions within the cockpit. To bridge this gap, this paper proposes a novel compensation method incorporating near-field loudspeakers. A comprehensive mathematical model for multiple off-center listening points is established based on acoustic velocity and energy vector theory. We further formulate a dual-phase optimization framework: a multi-objective model employing the NSGA-II algorithm to Pareto-optimize the trade-off between minimizing localization error and maximizing spatial stability, followed by a maximin model that guarantees robustness during head movements. A formal listening experiment demonstrates that the proposed optimized design significantly improves both localization accuracy and stability over conventional uniform layouts, thereby enhancing the fidelity and safety of flight simulation training.
31 October 2025





