A Numerical Assessment of Some Recurrent Crime Series in the State of Pittsburg †
Abstract
1. Introduction
2. Materials and Methods
2.1. The INAR(1) Process with the Poisson–Bilal (INAR(1)PB Innovation
- (a)
- (b)
- Var.
- (c)
- Cov.
- (d)
- Cov
2.2. Estimation of Parameters: CML
3. Numerical Illustrations
3.1. Data Application
3.1.1. Series of Offences from January 1990 to December 2001
3.1.2. Crimes Series from 1 July 2023 to 30 September 2023
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Lopez, E.; Rosenfeld, R.; Boxerman. Crime Trends in US Cities: Mid Year 2023 Update; Council On Criminal Justice: Washington, DC, USA, 2023. [Google Scholar]
- Braga, A.; Weisburd, D. Policing Problem Places: Crime Hot Spots and Effective Prevention; Oxford University Press: New York, NY, USA, 2010. [Google Scholar]
- Braga, A.; Hureau, A.; Papachristos, A. An Ex-post-facto Evaluation Framework for Place-based Police. Eval. Rev. 2011, 35, 592–626. [Google Scholar] [CrossRef] [PubMed]
- Sherman, L.; Gartin, P.; Buerger, M. Hot spots of predatory crime: Routine activities and the criminology of place. Criminology 1989, 27, 27–56. [Google Scholar] [CrossRef]
- Meyer, M.; Hassafy, A.; Lewis, G.; Shrestha, P.; Haviland, A.; Nagin, D. Changes in crime rates during the COVID-19 pandemic. Stat. Public Policy 2022, 9, 97–109. [Google Scholar] [CrossRef]
- McKenzie, E. Some simple models for discrete variate time series. Water Resour. Bull. 1985, 21, 645–650. [Google Scholar] [CrossRef]
- McKenzie, E. Autoregressive moving-average processes with negative binomial and geometric marginal distrbutions. Adv. Appl. Probab. 1986, 18, 679–705. [Google Scholar] [CrossRef]
- Steutel, F.; van Harn, K. Discrete analogues of self-decomposability and statibility. Ann. Probab. 1979, 7, 3893–3899. [Google Scholar] [CrossRef]
- Jowaheer, V.; Sutradhar, B. Analysing longitudinal count data with overdipsersion. Biometrika 2002, 89, 389–399. [Google Scholar] [CrossRef]
- Chang, L.; Liu, X.; Wang, D.; Jing, Y.; Li, C. First-order random coefficient mixed-thinning integer-valued autoregressive model. J. Comput. Appl. Math. 2022, 410, 114222. [Google Scholar] [CrossRef]
- Haixiang, Z.; Wang, D. Inference for random coefficient INAR (1) process based on frequency domain analysis. Commun. Stat.-Simul. Comput. 2015, 44, 1078–1100. [Google Scholar]
- Yuvraj, S.; Naushad, M.K. A Novel Unconstrained Geometric BINAR (1) Model. Eng. Proc. 2023, 39, 52. [Google Scholar]
- Sunecher, Y.; Mamode Khan, N. Comparison of Inferential Methods for a Novel CMP Model. Eng. Proc. 2024, 68, 18. [Google Scholar]
- Zhang, H.; Wang, D.; Zhu, F. Inference for INAR(p) processes with signed generalized power series thinning operator. J. Statisical Plan. Inference 2009, 140, 667–683. [Google Scholar] [CrossRef]
- Zhang, H.; Wang, D.; Zhu, F. Generalized RCINAR (1) process with signed thinning operator. Commun. Stat.-Theory Methods 2012, 41, 1750–1770. [Google Scholar] [CrossRef]
- Weiss, C. Thinning Operations for modelling time series of counts-a survey. AStA Adv. Stat. Anal. 2008, 92, 319–341. [Google Scholar] [CrossRef]
- McCabe, B.; Martin, G.; Harris, D. Efficient probabilistic forecasts for counts. J. R. Stat. Soc. B 2011, 73, 253–272. [Google Scholar] [CrossRef]
| T | ||||
|---|---|---|---|---|
| 60 | 0.5 | 0.5 | 0.4817 (0.1542) | 0.5259 (0.1016) |
| 100 | 0.4911 (0.1277) | 0.5080 (0.0792) | ||
| 500 | 0.5088 (0.0630) | 0.5019 (0.0244) | ||
| 60 | 0.9 | 0.4829 (0.1490) | 0.8799 (0.1140) | |
| 100 | 0.4902 (0.1115) | 0.8896 (0.0870) | ||
| 500 | 0.5060 (0.0462) | 0.9057 (0.0356) | ||
| 60 | 1 | 0.5 | 1.2789 (0.1615) | 0.4812 (0.1001) |
| 100 | 1.1111 (0.1305) | 0.4867 (0.0859) | ||
| 500 | 1.0301 (0.0754) | 0.5036 (0.0305) | ||
| 60 | 0.9 | 0.9844 (0.1481) | 0.8806 (0.1216) | |
| 100 | 0.9910 (0.1038) | 0.8966 (0.0856) | ||
| 500 | 1.0155 (0.0707) | 0.9011 (0.0337) | ||
| 60 | 5 | 0.5 | 4.7587 (0.1733) | 0.4828 (0.1146) |
| 100 | 4.8072 (0.1507) | 0.4808 (0.0864) | ||
| 500 | 5.0051 (0.0968) | 0.5066 (0.0461) | ||
| 60 | 0.9 | 4.821 (0.1687) | 0.8864 (0.1187) | |
| 100 | 4.902 (0.1287) | 0.8929 (0.0810) | ||
| 500 | 5.0171 (0.0790) | 0.9070 (0.0319) | ||
| 60 | 10 | 0.5 | 9.8812 (0.1813) | 0.4804 (0.1236) |
| 100 | 9.8911 (0.1545) | 0.4936 (0.0980) | ||
| 500 | 10.0048 (0.0923) | 0.5073 (0.0306) | ||
| 60 | 0.9 | 9.8608 (0.1813) | 0.8808 (0.1132) | |
| 100 | 9.9371 (0.1479) | 0.8958 (0.0861) | ||
| 500 | 10.0145 (0.0742) | 0.9091 (0.0487) |
| Crimes | Mean | Variance | Fisher Index |
|---|---|---|---|
| Theft | 13.1035 | 121.0238 | 9.2360 |
| Robbery | 3.0175 | 10.7363 | 3.5580 |
| Burglary | 7.5795 | 37.6811 | 4.9714 |
| Offence | Parameter | Model | ||
|---|---|---|---|---|
| PB | PL | NB | ||
| Theft | 0.4802 (0.0041) | 0.4993 (0.0040) | 0.5291 (0.0040) | |
| 8.1353 (0.0894) | 0.2728 (0.0029) | 6.1702 (0.0886) | ||
| 1.0109 (0.0265) | ||||
| AIC | −39,024.88 | −38,759.24 | −38,477.28 | |
| Robbery | 0.4037 (0.0063) | 0.4161 (0.0063) | 0.4329 (0.0064) | |
| 2.1538 (0.0310) | 0.8743 (0.0119) | 1.7118 (0.0312) | ||
| 1.2317 (0.0467) | ||||
| AIC | −25,507.28 | −25,229 | −25,090.96 | |
| Burglary | 0.4185 (0.0049) | 0.4434 (0.0049) | 0.4583 (0.0048) | |
| 5.2776 (0.0619) | 0.4060 (0.0046) | 4.1072 (0.0572) | ||
| 0.8348 (0.0253) | ||||
| AIC | −33,646.42 | −33,506.40 | −33,456.78 | |
| Offence | Parameter | Model | |
|---|---|---|---|
| PInvG | CMP | ||
| Theft | 0.5124 (0.0040) | 0.6182 (0.0031) | |
| 6.3910 (0.0977) | 0.6046 (0.0010) | ||
| 5.3194 (0.1792) | −0.1169 (0.0005) | ||
| AIC | −38,690.90 | −35,528.04 | |
| Robbery | 0.4257 (0.0064) | 0.6314 (0.0049) | |
| 1.7332 (0.0324) | 0.1019 (0.0064) | ||
| 1.2277 (0.0600) | −0.1875 (0.0009) | ||
| AIC | −25,153.60 | −21,871.24 | |
| Burglary | 0.4410 (0.0048) | 0.6224 (0.0033) | |
| 4.2372 (0.0600) | 0.4180 (0.0008) | ||
| 4.6524 (0.1758) | −0.2187 (0.0006) | ||
| AIC | −33,532.68 | −28,501 | |
| Crimes | Mean | Variance | Fisher Index |
|---|---|---|---|
| Theft | 18.4348 | 47.4353 | 2.5731 |
| Robbery | 1.6839 | 2.1782 | 1.2935 |
| Burglary | 2.1087 | 2.8452 | 1.3493 |
| Offence | Parameter | Model | |
|---|---|---|---|
| PB | PL | ||
| Theft | 0.3986 (0.0330) | 0.4185 (0.0329) | |
| 13.2309 (1.1134) | 0.1741 (0.0144) | ||
| AIC | −619.8 | −622.02 | |
| Robbery | 0.0319 (0.0695) | 0.0804 (0.0688) | |
| 1.9032 (0.2159) | 0.9919 (0.1088) | ||
| AIC | −304.05 | −308.62 | |
| Burglary | 0.2152 (0.0633) | 0.2728 (0.0611) | |
| 2.0020 (0.2328) | 0.9693 (0.1089) | ||
| AIC | −326.06 | −330.41 | |
| Offence | Parameter | Model | |
|---|---|---|---|
| PInvG | CMP | ||
| Theft | 0.0785 (0.0339) | 0.0729 (0.0354) | |
| 16.8983 (0.7230) | 2.6720 (0.0423) | ||
| 163.0481 (42.8347) | 0.3540 (0.0055) | ||
| AIC | −600.2546 | −598.48 | |
| Robbery | 0.0041 (0.0610) | 0.0058 (0.0625) | |
| 2.3705 (0.2501) | 0.9461 (0.1129) | ||
| 13.6229 (49.6299) | 0.1750 (0.0034) | ||
| AIC | −290.12 | −297.67 | |
| Burglary | 0.0888 (0.0631) | 0.0728 (0.0615) | |
| 1.9333 (0.1719) | 0.8797 (0.1139) | ||
| 11.3773 (7.5373) | 0.1546 (0.0024) | ||
| AIC | −319.15 | −315.42 | |
| Offence | Parameter | Model | |
|---|---|---|---|
| PB | PL | ||
| Theft | 0.6611 (0.0309) | 0.7451 (0.0303) | |
| 14.8788 (1.1071) | 0.1992 (0.0131) | ||
| AIC | −624.3 | −627.2 | |
| Robbery | 0.6922 (0.0612) | 0.7433 (0.0635) | |
| 1.8781 (0.2043) | 1.0023 (0.1056) | ||
| AIC | −307.01 | −313.02 | |
| Burglary | 0.7092 (0.0599) | 0.7331 (0.0602) | |
| 2.1521 (0.2289) | 0.9845 (0.1011) | ||
| AIC | −331.24 | −334.51 | |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sunecher, Y.; Khan, N.M.; Rodrigues, P.C. A Numerical Assessment of Some Recurrent Crime Series in the State of Pittsburg. Comput. Sci. Math. Forum 2025, 11, 35. https://doi.org/10.3390/cmsf2025011035
Sunecher Y, Khan NM, Rodrigues PC. A Numerical Assessment of Some Recurrent Crime Series in the State of Pittsburg. Computer Sciences & Mathematics Forum. 2025; 11(1):35. https://doi.org/10.3390/cmsf2025011035
Chicago/Turabian StyleSunecher, Yuvraj, Naushad Mamode Khan, and Paulo Canas Rodrigues. 2025. "A Numerical Assessment of Some Recurrent Crime Series in the State of Pittsburg" Computer Sciences & Mathematics Forum 11, no. 1: 35. https://doi.org/10.3390/cmsf2025011035
APA StyleSunecher, Y., Khan, N. M., & Rodrigues, P. C. (2025). A Numerical Assessment of Some Recurrent Crime Series in the State of Pittsburg. Computer Sciences & Mathematics Forum, 11(1), 35. https://doi.org/10.3390/cmsf2025011035
