Glaucoma is a leading cause of irreversible blindness globally, with early diagnosis being crucial to preventing vision loss. Traditional diagnostic methods, including fundus photography, OCT imaging, and perimetry, often fall short in sensitivity and fail to integrate structural and functional data. This study
[...] Read more.
Glaucoma is a leading cause of irreversible blindness globally, with early diagnosis being crucial to preventing vision loss. Traditional diagnostic methods, including fundus photography, OCT imaging, and perimetry, often fall short in sensitivity and fail to integrate structural and functional data. This study proposes a novel multi-modal diagnostic framework that combines convolutional neural networks (CNNs), vision transformers (ViTs), and quantum-enhanced layers to improve glaucoma detection accuracy and efficiency. The framework integrates fundus images, OCT scans, and clinical biomarkers, leveraging their complementary strengths through a weighted fusion mechanism. Datasets, including the GRAPE and other public and clinical sources, were used, ensuring diverse demographic representation and supporting generalizability. The model was trained and validated using cross-entropy loss, L2 regularization, and adaptive learning strategies, achieving an accuracy of 96%, sensitivity of 94%, and an AUC of 0.97—outperforming CNN-only and ViT-only approaches. Additionally, the quantum-enhanced architecture reduced computational complexity from O(
n2) to O (log
n), enabling real-time deployment with a 40% reduction in FLOPs. The proposed system addresses key limitations of previous methods in terms of computational cost, data integration, and interpretability. The proposed system addresses key limitations of previous methods in terms of computational cost, data integration, and interpretability. This framework offers a scalable and clinically viable tool for early glaucoma detection, supporting personalized care and improving diagnostic workflows in ophthalmology.
Full article