A Novel Approach for Modeling Strain Hardening in Plasticity and Its Material Parameter Identification by Bayesian Optimization for Automotive Structural Steels Application
Abstract
1. Introduction
2. Materials and Methods
2.1. Specimen Preparation
2.2. Experiment Setup
2.3. Finite Element Model
2.4. Constitutive Model in Continuum Mechanics
2.5. Rational Polynomial Function Applied in Constitutive Model
2.6. Optimization
3. Results
3.1. Experimental Results
3.2. Force vs. Displacement Fit
4. Discussion
5. Conclusions and Further Work
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
References
- Haight, S.; Wang, L.; Du Bois, P.; Carney, K.; Kan, C.D. Development of a Titanium Alloy Ti-6Al-4V Material Model Used in LS-DYNA; Report; George Mason University, The George Washington University, NASA Glenn Research Center: Washington, DC, USA, 2016. [Google Scholar]
- Wang, L.; Kan, C.D.; Lo, J.; Lee, J. Stress-strain curve determined from a non-uniformly deformed specimen: An application of autonomous finite element analysis. J. Micromech. Mol. Phys. 2022, 7, 81–101. [Google Scholar] [CrossRef]
- Wi, M.; Lee, S.; Kim, J.; Kim, J.; Barlat, F. Experimental and theoretical plasticity analyses of steel materials deformed under a nonlinear strain path. Int. J. Mech. Sci. 2020, 182, 105770. [Google Scholar] [CrossRef]
- Zhang, J.; Ye, J.S.; Zhou, C.W. Powell’s optimal identification of material constants of thin-walled box girders based on Fibonacci series search method. Appl. Math. Mech. 2011, 32, 97–106. [Google Scholar] [CrossRef]
- Elouneg, A.; Sutula, D.; Chambert, J.; Lejeune, A.; Bordas, S.; Jacquet, E. An open-source FEniCS-based framework for hyperelastic parameter estimation from noisy full-field data: Application to heterogeneous soft tissues. Comput. Struct. 2021, 255, 106620. [Google Scholar] [CrossRef]
- Bel-Brunon, A.; Kehl, S.; Martin, C.; Uhlig, S.; Wall, W. Numerical identification method for the non-linear viscoelastic compressible behavior of soft tissue using uniaxial tensile tests and image registration—Application to rat lung parenchyma. J. Mech. Behav. Biomed. Mater. 2014, 29, 360–374. [Google Scholar] [CrossRef] [PubMed]
- Doraiswamy, S.; Srinivasa, A.R. A Bayesian approach to accounting for variability in mechanical properties in biomaterials. arXiv 2013, arXiv:1312.2856. [Google Scholar] [CrossRef]
- Feroz, F.; Hobson, M.; Bridges, M. MultiNest: An efficient and robust Bayesian inference tool for cosmology and particle physics. Mon. Not. R. Astron. Soc. 2009, 398, 1601–1614. [Google Scholar] [CrossRef]
- Madireddy, S.; Sista, B.; Vemaganti, K. Bayesian calibration of hyperelastic constitutive models of soft tissue. J. Mech. Behav. Biomed. Mater. 2016, 59, 108–127. [Google Scholar] [CrossRef]
- Kenja, K.; Madireddy, S.; Vemaganti, K. Calibration of hyperelastic constitutive models: The role of boundary conditions, search algorithms, and experimental variability. Biomech. Model. Mechanobiol. 2020, 19, 1935–1952. [Google Scholar] [CrossRef]
- Jiang, P.; Zhou, Q.; Shao, X. Surrogate-Model-Based Design and Optimization; Springer: Berlin/Heidelberg, Germany, 2020. [Google Scholar] [CrossRef]
- Körbahti, B.K. Response surface optimization of electrochemical treatment of textile dye wastewater. J. Hazard. Mater. 2007, 145, 277–286. [Google Scholar] [CrossRef]
- González-Cuello, R.; Hernández-Fernández, J.; Ortega-Toro, R. Response Surface Methodology-Based Optimization for Enhancing the Viability of Microencapsulated Lactobacillus plantarum in Composite Materials. J. Compos. Sci. 2025, 9, 189. [Google Scholar] [CrossRef]
- Hou, J.; Chen, X.; Wu, T.; Kuhl, E.; Wang, X. Automated Data-Driven Discovery of Material Models Based on Symbolic Regression: A Case Study on Human Brain Cortex. arXiv 2024, arXiv:2402.05238. [Google Scholar] [CrossRef] [PubMed]
- Ebrahim, A.S.; Zhang, Q.; Ha, J. Artificial neural network enhanced plasticity modelling and ductile fracture characterization of grade-1 commercial pure titanium. Int. J. Plast. 2024, 179, 104044. [Google Scholar] [CrossRef]
- Liu, P. Bayesian Optimization: Theory and Practice Using Python; Springer: Berlin, Germany, 2023. [Google Scholar] [CrossRef]
- Long, T.; Shende, S.; Lin, C.Y.; Vemaganti, K. Experiments and hyperelastic modeling of porcine meniscus show heterogeneity at high strains. Biomech. Model. Mechanobiol. 2022, 21, 1641–1658. [Google Scholar] [CrossRef]
- Kuhn, J.; Spitz, J.; Sonnweber-Ribic, P.; Schneider, M.; Böhlke, T. Identifying material parameters in crystal plasticity by Bayesian optimization. Optim. Eng. 2021, 23, 1489–1523. [Google Scholar] [CrossRef]
- Wakabayashi, Y.K.; Otsuka, T.; Krockenberger, Y.; Sawada, H.; Taniyasu, Y.; Yamamoto, H. Bayesian optimization with experimental failure for high-throughput materials growth. npj Comput. Mater. 2022, 8, 180. [Google Scholar] [CrossRef]
- Wu, T.; Rosić, B.; De Lorenzis, L.; Matthies, H.G. Parameter identification for phase-field modeling of fracture: A Bayesian approach with sampling-free update. Comput. Mech. 2021, 67, 435–453. [Google Scholar] [CrossRef]
- Kanada, R.; Tokuhisa, A.; Tsuda, K.; Okuno, Y.; Terayama, K. Exploring successful parameter region for coarse-grained simulation of biomolecules by Bayesian optimization and active learning. Biomolecules 2020, 10, 482. [Google Scholar] [CrossRef]
- Zhong, J.; Xu, T.; Wang, W.; Guan, K.; Song, M.; Huang, S.; Zhang, S. Use of database and small punch test to estimate true stress-plastic strain curve of steels. Int. J. Press. Vessel. Pip. 2021, 191, 104370. [Google Scholar] [CrossRef]
- Lotfolahpour, A.; Soltani, N.; Ganjiani, M.; Baharlouei, D. Parameters identification and validation of plastic-damage model of 304 stainless steel by small punch test at ambient temperature. Eng. Fract. Mech. 2018, 200, 64–74. [Google Scholar] [CrossRef]
- Kang, J.J.; Becker, A.A.; Wen, W.; Sun, W. Extracting elastic-plastic properties from experimental loading-unloading indentation curves using different optimization techniques. Int. J. Mech. Sci. 2018, 144, 102–109. [Google Scholar] [CrossRef]
- Hallquist, J.O. LS-DYNA Keyword User’s Manual; Livermore Software Technology Corporation: Livermore, CA, USA, 2007; Volume 970, pp. 299–800. [Google Scholar]
- Golovina, N.Y. Modeling the Stress-Strain Curve of Elastic-Plastic Materials. Solid State Phenom. 2021, 316, 936–941. [Google Scholar] [CrossRef]
- Dassault Systèmes. Abaqus 2024 Documentation; Dassault Systèmes Simulia Corp.: Providence, RI, USA, 2024; Available online: https://www.3ds.com/products-services/simulia/products/abaqus/ (accessed on 1 May 2025).
- Masete, M.S.; Muchavi, N.S.; Chikosha, S. The effect of specimen geometry on tensile properties of titanium alloy metal sheet. In Proceedings of the IOP Conference Series: Materials Science and Engineering, Vanderbijlpark, South Africa, 23–26 October 2018; IOP Publishing: Bristol, UK, 2018; Volume 430, p. 012015. [Google Scholar] [CrossRef]
- Casey, J. On elastic-thermo-plastic materials at finite deformations. Int. J. Plast. 1998, 14, 173–191. [Google Scholar] [CrossRef]
- Chen, Y.; Lee, J.D.; Eskandarian, A. Meshless Methods in Solid Mechanics; Springer: Berlin, Germany, 2006; Volume 9. [Google Scholar] [CrossRef]
- Lee, J.D.; Li, J. Advanced Continuum Theories and Finite Element Analyses; World Scientific: Singapore, 2020; Volume 2. [Google Scholar] [CrossRef]
- Green, A.E.; Naghdi, P.M. A General Theory of an Elastic-Plastic Continuum. Arch. Ration. Mech. Anal. 1965, 18, 251–281. [Google Scholar] [CrossRef]
- Nise, N.S. Control Systems Engineering; John Wiley & Sons: Hoboken, NJ, USA, 2020. [Google Scholar]
- da Silva, A.F.; da Silva, A.C.G.; Azevedo, R.; dos Santos, W.P. Detection and classification of breast lesions in thermographic images by deep transfer learning hybrid architectures. Res. Biomed. Eng. 2024, 40, 499–520. [Google Scholar] [CrossRef]
- Seko, A. Tutorial: Systematic development of polynomial machine learning potentials for elemental and alloy systems. J. Appl. Phys. 2023, 133, 011101. [Google Scholar] [CrossRef]
- Shende, S.; Gillman, A.; Yoo, D.; Buskohl, P.; Vemaganti, K. Bayesian topology optimization for efficient design of origami folding structures. Struct. Multidiscip. Optim. 2021, 63, 1907–1926. [Google Scholar] [CrossRef]
- Jones, E.; Oliphant, T.; Peterson, P. SciPy: Open Source Scientific Tools for Python. 2025. Available online: https://scipy.org/ (accessed on 7 January 2020).
- Nogueira, F. Bayesian Optimization: Open Source Constrained Global Optimization Tool for Python. 2014. Available online: https://github.com/fmfn/BayesianOptimization (accessed on 7 January 2020).
- Rasmussen, C.E.; Williams, C.K.I. Gaussian Processes for Machine Learning; MIT Press: Cambridge, MA, USA, 2006. [Google Scholar]
- Pedregosa, F.; Varoquaux, G.; Gramfort, A.; Michel, V.; Thirion, B.; Grisel, O.; Blondel, M.; Prettenhofer, P.; Weiss, R.; Dubourg, V.; et al. Class Sklearn.Gaussian_Process.Kernels.Matern. 2025. Available online: https://scikit-learn.org/stable/modules/generated/sklearn.gaussian_process.kernels.Matern.html (accessed on 11 July 2025).
- Farina, G. Course materials for Nonlinear Optimization (MIT 6.S890 / 6.7220, Spring 2025); Massachusetts Institute of Technology (MIT): Cambridge, MA, USA, 2025; Available online: https://www.mit.edu/~gfarina/notes/ (accessed on 7 January 2025).
- De Ath, G.; Fieldsend, J.E.; Everson, R.M. What do you mean? The role of the mean function in bayesian optimisation. In Proceedings of the 2020 Genetic and Evolutionary Computation Conference Companion, Cancún, Mexico, 8–12 July 2020; pp. 1623–1631. [Google Scholar] [CrossRef]
- Duvenaud, D. Automatic Model Construction with Gaussian Processes. Ph.D. Thesis, University of Cambridge, Cambridge, UK, 2014. [Google Scholar]
- De Ath, G.; Everson, R.M.; Rahat, A.A.; Fieldsend, J.E. Greed is good: Exploration and exploitation trade-offs in Bayesian optimisation. ACM Trans. Evol. Learn. Optim. 2021, 1, 1–22. [Google Scholar] [CrossRef]
- Hernández-Lobato, J.M.; Hoffman, M.W.; Ghahramani, Z. Predictive Entropy Search for Efficient Global Optimization of Black-box Functions. arXiv 2014, arXiv:1406.2541. [Google Scholar] [CrossRef]
- Bagnell, J.A. Statistical Techniques in Robotics: Machine Learning and Probabilistic Approaches to Uncertainty and Adaptation; Carnegie Mellon University: Pittsburgh, PA, USA, 2014; Available online: https://www.cs.cmu.edu/~16831-f12/notes/F09/lec21/16831_lecture21.sross.pdf (accessed on 7 January 2025).
- Sherugar, S.; Birkett, M.; Blacklock, M. Characterisation of print path deviation in material extrusion. Prog. Addit. Manuf. 2024, 9, 1049–1060. [Google Scholar] [CrossRef]
- Chakrabarty, J. Theory of Plasticity; Elsevier: Amsterdam, The Netherlands, 2012. [Google Scholar]
- Ludwigson, D. Modified stress-strain relation for FCC metals and alloys. Metall. Trans. 1971, 2, 2825–2828. [Google Scholar] [CrossRef]
- Dassault Systèmes Simulia Corp. Abaqus User Manual; Dassault Systèmes Simulia Corp.: Providence, RI, USA, 2025. [Google Scholar]
- Zhu, Y.; Liu, G.; Wen, Y.; Xu, C.; Niu, W.; Wang, G. Back-Spalling process of an Al2O3 ceramic plate subjected to an impact of steel ball. Int. J. Impact Eng. 2018, 122, 451–471. [Google Scholar] [CrossRef]
- Malu, M.; Dasarathy, G.; Spanias, A. Bayesian optimization in high-dimensional spaces: A brief survey. In Proceedings of the 2021 12th International Conference on Information, Intelligence, Systems & Applications (IISA), Chania Crete, Greece, 12–14 July 2021; pp. 1–8. [Google Scholar] [CrossRef]
Material Model | Stress vs. Strain Relation |
---|---|
Ludwik | |
Swift | |
Voce | |
Ramberg-Osgood | |
Normalized Ramberg-Osgood | |
Modified Ludwik Model | |
Johnson–Cook | |
Piecewise linear plasticity | Table includes , i = 1, 2 ... N |
Rational Polynomial (General) | |
Rational Polynomial (Present) |
Dimension | Specimen 1 | Specimen 2 | Specimen 3 |
---|---|---|---|
Top Shoulder To Top Grip | 8.69 | 11.16 | 3.97 |
Bottom Shoulder To Bottom Grip | 5.60 | 9.00 | 6.45 |
Bottom Shoulder To Bottom Grip | 8.93 | 11.99 | 7.44 |
Total Length | 101.45 | 101.65 | 53.55 |
Reduced Length | 31.06 | 29.77 | 29.49 |
Width | 6.32 | 6.31 | 6.16 |
Thickness | 2.02 | 2.02 | 1.23 |
Ext. Meter Len | 25.40 | 25.40 | 25.40 |
Specimen No.1 | Specimen No.2 | Specimen No.3 | |
---|---|---|---|
Yield point force (kN) | 5.42 | 4.17 | 3.36 |
Initial cross-section area () | 12.77 | 12.75 | 7.58 |
Yield strength (GPa) | 0.4244 | 0.3272 | 0.4435 |
Specimen | |||||
---|---|---|---|---|---|
No.1 | 1436.04 | 70,626.59 | 1658.52 | 70,937.46 | 3793.77 |
No.2 | 214.21 | 320,496.07 | 16,346.98 | 533,919.11 | 51,904.17 |
No.3 | 1436.04 | 70,626.59 | 1658.52 | 70,937.46 | 3793.77 |
Specimen | BO Initial Value | BO Final Value | Nelder–Mead Final Value |
---|---|---|---|
No.1 | 1.204 | 0.479 | 0.380 |
No.2 | 1.144 | 0.474 | 0.422 |
No.3 | 1.487 | 0.237 | 0.204 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Long, T.; Wang, L.; Kan, C.-D.; Lee, J.D. A Novel Approach for Modeling Strain Hardening in Plasticity and Its Material Parameter Identification by Bayesian Optimization for Automotive Structural Steels Application. AppliedMath 2025, 5, 104. https://doi.org/10.3390/appliedmath5030104
Long T, Wang L, Kan C-D, Lee JD. A Novel Approach for Modeling Strain Hardening in Plasticity and Its Material Parameter Identification by Bayesian Optimization for Automotive Structural Steels Application. AppliedMath. 2025; 5(3):104. https://doi.org/10.3390/appliedmath5030104
Chicago/Turabian StyleLong, Teng, Leyu Wang, Cing-Dao Kan, and James D. Lee. 2025. "A Novel Approach for Modeling Strain Hardening in Plasticity and Its Material Parameter Identification by Bayesian Optimization for Automotive Structural Steels Application" AppliedMath 5, no. 3: 104. https://doi.org/10.3390/appliedmath5030104
APA StyleLong, T., Wang, L., Kan, C.-D., & Lee, J. D. (2025). A Novel Approach for Modeling Strain Hardening in Plasticity and Its Material Parameter Identification by Bayesian Optimization for Automotive Structural Steels Application. AppliedMath, 5(3), 104. https://doi.org/10.3390/appliedmath5030104