Implicit Quiescent Optical Soliton Perturbation with Nonlinear Chromatic Dispersion and Kudryashov’s Self-Phase Modulation Structures for the Complex Ginzburg–Landau Equation Using Lie Symmetry: Linear Temporal Evolution
Abstract
1. Introduction
2. Governing Mathematical Model
3. Mathematical Preliminaries
4. Application to the Six Forms of SPM by Kudryashov
4.1. Form-I
4.2. Form-II
4.3. Form-III
4.4. Form-IV
4.5. Form-V
4.6. Form-VI
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Adem, A.R.; Ntsime, B.P.; Biswas, A.; Ekici, M.; Yildirim, Y.; Alshehri, H.M. Implicit quiescent optical solitons with complex Ginzburg–Landau equation having nonlinear chromatic dispersion. J. Optoelectron. Adv. Mater. 2022, 24, 450–462. [Google Scholar]
- Adem, A.R.; Biswas, A.; Yildirim, Y.; Alshomrani, A.S. Revisitation of “implicit quiescent optical solitons with complex Ginzburg–Landau equation having nonlinear chromatic dispersion”: Generalized temporal evolution. J. Opt. 2024. [Google Scholar] [CrossRef]
- Biswas, A.; Ekici, M.; Sonmezoglu, A.; Belic, M. Stationary optical solitons with nonlinear group velocity dispersion by extended trial function scheme. Optik 2018, 171, 529–542. [Google Scholar] [CrossRef]
- Arnous, A.H.; Biswas, A.; Yildirim, Y.; Moraru, L.; Moldovanu, S.; Iticescu, C.; Khan, S.; Alshehri, H.M. Quiescent optical solitons with quadratic–cubic and generalized quadratic–cubic nonlinearities. Telecom 2023, 4, 31–42. [Google Scholar] [CrossRef]
- Ekici, M. Stationary optical solitons with complex Ginzburg–Landau equation having nonlinear chromatic dispersion and Kudryashov’s refractive index structures. Phys. Lett. A 2022, 440, 128146. [Google Scholar] [CrossRef]
- Ekici, M. Kinky breathers, W–shaped and multi–peak soliton interactions for Kudryashov’s quintuple power–law coupled with dual form of non–local refractive index structure. Chaos Solitons Fractals 2022, 159, 112172. [Google Scholar] [CrossRef]
- Ekici, M. Optical solitons with Kudryashov’s quintuple power–law coupled with dual form of non–local law of refractive index with extended Jacobi’s elliptic function. Opt. Quantum Electron. 2022, 54, 279. [Google Scholar] [CrossRef]
- Ekici, M. Stationary optical solitons with Kudryashov’s quintuple power law nonlinearity by extended Jacobi’s elliptic function expansion. J. Nonlinear Opt. Phys. Mater. 2023, 32, 2350008. [Google Scholar] [CrossRef]
- Han, T.; Li, Z.; Li, C.; Zhao, L. Bifurcations, stationary optical solitons and exact solutions for complex Ginzburg–Landau equation with nonlinear chromatic dispersion in non–Kerr law media. J. Opt. 2023, 52, 831–844. [Google Scholar] [CrossRef]
- Kudryashov, N.A. Stationary solitons of the generalized nonlinear Schrödinger equation with nonlinear dispersion and arbitrary refracttive index. Appl. Math. Lett. 2022, 128, 107888. [Google Scholar] [CrossRef]
- Kudryashov, N.A. Stationary solitons of the model with nonlinear chromatic dispersion and arbitrary refractive index. Optik 2024, 259, 168888. [Google Scholar] [CrossRef]
- Jawad, A.J.M.; Abu–AlShaeer, M.J. Highly dispersive optical solitons with cubic law and cubic–quintic–septic law nonlinearities by two methods. Al-Rafidain J. Eng. Sci. 2023, 1, 1–8. [Google Scholar] [CrossRef]
- Jihad, N.; Almuhsan, M.A.A. Evaluation of impairment mitigations for optical fiber communications using dispersion compensation techniques. Al-Rafidain J. Eng. Sci. 2023, 1, 81–92. [Google Scholar] [CrossRef]
- Yalci, A.M.; Ekici, M. Stationary optical solitons with complex Ginzburg–Landau equation having nonlinear chromatic dispersion. Opt. Quantum Electron. 2022, 54, 167. [Google Scholar] [CrossRef]
- Yan, Z. Envelope compact and solitary pattern structures for the GNLS(m, n, p, q) equations. Phys. Lett. A 2006, 357, 196–203. [Google Scholar] [CrossRef]
- Kudryashov, N.A. Rational solitary waves and optical solitons of the model having unrestricted dispersion and nonlinearity with polynomial form. Optik 2022, 271, 170154. [Google Scholar] [CrossRef]
- Kudryashov, N.A. Embedded solitons of the generalized nonlinear Schrödinger equation with high dispersion. Regul. Chaotic Dyn. 2022, 27, 680–696. [Google Scholar] [CrossRef]
- Kudryashov, N.A. Bright solitons of the model with arbitrary refractive index and unrestricted dispersion. Optik 2022, 270, 170057. [Google Scholar] [CrossRef]
- Kudryashov, N.A. Solitary waves of the generalized Radhakrishnan-Kundu-Lakshmanan equation with four powers of nonlinearity. Phys. Lett. A 2022, 448, 128327. [Google Scholar] [CrossRef]
- Kudryashov, N.A. Exact solutions of the complex Ginzburg–Landau equation with law of four powers of nonlinearity. Optik 2022, 265, 169548. [Google Scholar] [CrossRef]
- Kudryashov, N.A. Solitary waves of model with triple arbitrary power and non-local nonlinearity. Optik 2022, 262, 169334. [Google Scholar] [CrossRef]
- Kudryashov, N.A. Method for finding optical solitons of generalized nonlinear Schrödinger equations. Optik 2022, 261, 169163. [Google Scholar] [CrossRef]
- Kudryashov, N.A. Highly dispersive optical solitons of the sixth-order differential equation with arbitrary refractive index. Optik 2022, 259, 168975. [Google Scholar] [CrossRef]
- Kudryashov, N.A. Optical solitons of the model with generalized anti-cubic nonlinearity. Optik 2022, 257, 168746. [Google Scholar] [CrossRef]
- Kudryashov, N.A. Optical solitons of nonlinear Schrödinger’s equation with arbitrary dual-power law parameters. Optik 2022, 252, 168497. [Google Scholar] [CrossRef]
- Yildirim, Y.; Biswas, A.; Moraru, L.; Alghamdi, A.A. Quiescent optical solitons for the concatenation model with nonlinear chromatic dispersion. Mathematics 2023, 11, 1709. [Google Scholar] [CrossRef]
- Kudryashov, N.A. Model of propagation pulses in an optical fiber with a new law of refractive indices. Optik 2021, 248, 168160. [Google Scholar] [CrossRef]
- Anam, N.; Atai, J. Quiescent solitary waves in dual-core systems with separated Bragg grating and cubic–quintic nonlinearity. Optik 2023, 287, 171104. [Google Scholar] [CrossRef]
- Akter, A.; Islam, M.J.; Atai, J. Quiescent gap solitons in coupled nonuniform Bragg gratings with cubic-quintic nonlinearity. Appl. Sci. 2021, 11, 4833. [Google Scholar] [CrossRef]
- Islam, M.J.; Atai, J. Stability of moving Bragg solitons in a semilinear coupled system with cubic–quintic nonlinearity. J. Mod. Opt. 2021, 168, 365–373. [Google Scholar] [CrossRef]
- Khan, S. Stochastic perturbation of optical solitons having generalized anti-cubic nonlinearity with bandpass filters and multi-photon absorption. Optik 2020, 200, 163405. [Google Scholar] [CrossRef]
- Triki, H.; Wazwaz, A.M. Combined optical solitary waves of the Fokas—Lenells equation. Waves Random Complex Media 2017, 27, 587–593. [Google Scholar] [CrossRef]
- Triki, H.; Pan, A.; Zhou, Q. Pure-quartic solitons in presence of weak nonlocality. Phys. Lett. A 2023, 459, 128608. [Google Scholar] [CrossRef]
- Ekici, M. Optical solitons in birefringent fibers for Lakshmanan–Porsezian–Daniel model by extended Jacobi’s elliptic function expansion scheme. Optik 2018, 172, 651–656. [Google Scholar] [CrossRef]
- Ekici, M.; Sarmaşık, C.A. Certain analytical solutions of the concatenation model with a multiplicative white noise in optical fibers. Nonlinear Dyn. 2024, 112, 9459–9476. [Google Scholar] [CrossRef]
- Yildirim, Y. Optical solitons to Sasa–Satsuma model with trial equation approach. Optik 2019, 184, 70–74. [Google Scholar] [CrossRef]
- Yildirim, Y. Optical solitons to Kundu–Mukherjee–Naskar model in birefringent fibers with trial equation approach. Optik 2019, 183, 1026–1031. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rashid Adem, A.; González-Gaxiola, O.; Biswas, A. Implicit Quiescent Optical Soliton Perturbation with Nonlinear Chromatic Dispersion and Kudryashov’s Self-Phase Modulation Structures for the Complex Ginzburg–Landau Equation Using Lie Symmetry: Linear Temporal Evolution. AppliedMath 2025, 5, 119. https://doi.org/10.3390/appliedmath5030119
Rashid Adem A, González-Gaxiola O, Biswas A. Implicit Quiescent Optical Soliton Perturbation with Nonlinear Chromatic Dispersion and Kudryashov’s Self-Phase Modulation Structures for the Complex Ginzburg–Landau Equation Using Lie Symmetry: Linear Temporal Evolution. AppliedMath. 2025; 5(3):119. https://doi.org/10.3390/appliedmath5030119
Chicago/Turabian StyleRashid Adem, Abdullahi, Oswaldo González-Gaxiola, and Anjan Biswas. 2025. "Implicit Quiescent Optical Soliton Perturbation with Nonlinear Chromatic Dispersion and Kudryashov’s Self-Phase Modulation Structures for the Complex Ginzburg–Landau Equation Using Lie Symmetry: Linear Temporal Evolution" AppliedMath 5, no. 3: 119. https://doi.org/10.3390/appliedmath5030119
APA StyleRashid Adem, A., González-Gaxiola, O., & Biswas, A. (2025). Implicit Quiescent Optical Soliton Perturbation with Nonlinear Chromatic Dispersion and Kudryashov’s Self-Phase Modulation Structures for the Complex Ginzburg–Landau Equation Using Lie Symmetry: Linear Temporal Evolution. AppliedMath, 5(3), 119. https://doi.org/10.3390/appliedmath5030119