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Abstract

There is an increasing demand for robust methodologies to rigorously evaluate the psy-
chometric properties of measurement scales used in quantitative research across various
scientific disciplines. This article proposes an integrative method that combines structural
equation modelling (SEM) with machine learning (ML) to jointly assess model fit and
predictive accuracy, limitations often addressed separately in traditional approaches. Using
a measurement scale for voluntary employee turnover intention, the method demonstrates
clear improvements: RMSEA decreased from 0.073 to 0.065, and classifier accuracy slightly
increased from 0.862 to 0.863 after removing three redundant items. Compared to stan-
dalone SEM or ML, the integrated framework yields a shorter, better-fitting scale without
compromising predictive power. For practitioners, this method enables the creation of more
efficient, theoretically grounded, and predictive tools, facilitating faster and more accurate
assessments in organisational settings. To this end, this study employs Covariance-Based
SEM (CB-SEM) in conjunction with classifiers such as naive Bayes, linear and nonlinear
support vector machines, decision trees, k-nearest neighbours, and logistic regression.

Keywords: machine learning; structural equation models; voluntary employee turnover
intentions

1. Introduction

Contemporary research in the field of work psychology and organisational manage-
ment increasingly emphasises the significant role of accurate and reliable measurement of
psychometric variables, such as voluntary turnover intentions. Measurement scales of this
kind play a crucial role not only in modelling the mechanisms of organisational behaviour
but also in predicting personnel phenomena that directly impact the functioning of enter-
prises [1-3]. Due to the substantial costs associated with employee turnover, developing
tools that allow for its early detection and the explanation of predictive factors remains a
problem of high applied value [4]. Despite the availability of various measurement scales,
many of them are tested without simultaneously considering the quality of structural model
fit and their predictive effectiveness, which limits their usefulness in practical applications.

While numerous studies have utilised either structural equation modelling (SEM) or
machine learning (ML) methods to assess psychometric instruments, these approaches
are typically applied in isolation, which limits their capacity to address theoretical model
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fit and predictive accuracy simultaneously. Traditional SEM procedures often empha-
sise model fit indices such as RMSEA or CFI but do not evaluate how individual items
contribute to out-of-sample prediction performance [5,6]. Conversely, ML models are
optimised for classification or regression accuracy but lack theoretical grounding in latent
construct measurement [7]. This methodological separation creates a significant gap: cur-
rent psychometric validation frameworks fail to integrate construct validity with predictive
utility in a unified approach. From the perspective of psychometric theory, the validation
of measurement instruments relies on establishing both construct validity and criterion-
related validity. SEM has traditionally been used to assess the internal structure of scales
(e.g., dimensionality, factor loadings), reflecting construct validity, while ML techniques
contribute primarily to assessing external validity through predictive performance. The
proposed integration aligns with the contemporary understanding of validity as a unitary
but multifaceted construct, where internal and external aspects should be addressed simul-
taneously. By incorporating item-level SEM diagnostics with predictive accuracy metrics
from ML, the method operationalises a psychometrically coherent framework that honours
both theoretical model specification and empirical utility [8,9].

Recent studies have highlighted the potential of combining SEM and ML, but no
standardised or replicable methodology has yet emerged for doing so in scale refine-
ment [10,11]. Addressing this gap, the present study proposes an integrative SEM-ML
framework for psychometric scale evaluation that accounts for theoretical validity and
predictive effectiveness.

The integration of structural equation modelling (SEM) and machine learning (ML)
remains underexplored despite their complementary strengths. SEM provides a robust
framework for confirming theoretical constructs and quantifying latent relationships, while
ML offers strong predictive capabilities based on complex patterns in data. However, the
lack of methodological integration means that researchers must often choose between
theoretical validation (SEM) and predictive performance (ML), thus missing opportunities
to leverage both. The proposed method bridges this divide by creating a unified analytic
pipeline where SEM identifies valid construct structures and ML tests their utility in
real-world predictions. This dual functionality is particularly valuable in applied fields
like organisational research, where both theoretical rigour and predictive accuracy are
essential [12].

This methodological gap defines the aim of the present article, which is to develop an
integrated method for evaluating psychometric scales that combines theoretical validation
with an assessment of predictive effectiveness. The approach proposed in this article
integrates structural equation modelling (SEM) with machine learning (ML), allowing for
simultaneous analysis of the scale’s fit to the theoretical concept and its utility in case
classification. To achieve the stated goal, the covariance-based SEM method was employed
(with maximum likelihood as the parameter estimation method), alongside the following
machine learning algorithms: naive Bayes, linear and nonlinear support vector machines,
decision trees, k-nearest neighbours, and logistic regression.

Such integration places this study at the core of applied mathematics, as it merges
optimisation techniques, parameter estimation, and algorithmic learning to solve real-world
empirical problems in an organisational context [5,6,13]. The theoretical contribution of this
study lies in extending the psychometric validation framework through a mathematically
formalised integration of SEM and ML. By demonstrating how predictive metrics and
structural model diagnostics can be used in tandem for item selection and scale refinement,
this study offers a novel methodological model for balancing construct coherence with
empirical performance. This approach challenges the conventional dichotomy between
theory-driven and data-driven methods in measurement development, proposing instead
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a unified paradigm that can be generalised to various domains where psychometric scale
evaluation is required. Thus, the article contributes to the growing interest in using applied
mathematics tools in analysing social and psychometric data, offering a novel approach to
constructing and testing research instruments. To illustrate the unified pipeline, Figure 1
presents a block diagram of the proposed SEM-ML integration method.

Data collection

SEM model Simulation of item

ML mode| traini
estimation ne remaoval (A RMSEA Final refined scale

) 4

h 4
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(RMSEA, CFI) (accuracy) and A Accuracy)

Figure 1. Block diagram of the integrative SEM-ML workflow.

This flowchart summarises the six main stages of our method. First, raw survey data
are collected and preprocessed. Next, a covariance-based SEM is fitted to obtain traditional
fit indices (e.g., RMSEA, CFIl), while, in parallel, an ML classifier is trained to measure
predictive performance (accuracy). In the third stage, each item is successively removed,
and both ARMSEA and AAccuracy are computed in simulation runs. The fourth step
applies a joint optimisation criterion—retaining only those items whose removal does not
substantially worsen fit or prediction, thus balancing theoretical coherence with empirical
utility. Finally, the selected subset of items yields a more parsimonious scale, optimised
simultaneously for model structure and predictive goals.

The Literature Review section presents the essence of the issues related to using
measurement scales for voluntary turnover intentions and explains the core and mathe-
matical formalisation of structural equation modelling (SEM) and machine learning. The
Methodology section outlines the procedure of the proposed method for evaluating mea-
surement scales, integrating structural equation modelling with machine learning. The
Results chapter presents the implementation of the method using the example of evaluating
a measurement scale for employee voluntary turnover intentions.

2. Literature Review
2.1. Measurement Scales for Employee Voluntary Turnover Intentions

Turnover intention refers to the likelihood or propensity of an employee to exit their
current organisational affiliation voluntarily [14]. This construct is typically operationalised
through temporal measurement frameworks within empirical research, capturing the
individual’s deliberative process regarding organisational departure [15]. Prior studies
have demonstrated a significant positive association between turnover intentions and actual
voluntary turnover behaviour, underscoring the predictive validity of the construct [16].

Voluntary turnover intention is one of organisational behaviour research’s most fre-
quently analysed variables. The literature indicates that turnover intentions are a reliable
predictor of actual employee departures [17]. A key issue in this area is the selection of
appropriate measurement tools, namely, scales for assessing turnover intentions and related
psychological and organisational variables. One of the most commonly used instruments is
the three-item scale developed by Mobley and colleagues [14], which includes questions
about thoughts of leaving, intentions to search for a new job, and the likelihood of leaving
in the near future—this scale has demonstrated good validity and reliability [18].

Subsequent research has introduced extended and multidimensional scales for mea-
suring voluntary turnover intentions, for example, the following:

e  Maertz and Campion [19] distinguish eight dimensions of turnover (e.g., avoidance,
calculative);

o Tett and Meyer [20] propose separating the measurement of intentions from the
emotional reasons for leaving;
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o Leeetal [21] develop a “push-pull” scale assessed using 5-point Likert scales;

e Bothma and Roodt [22] confirm the factorial validity as well as the reliability of the
TIS-6 scale;

o ke et al. [23] proposed and evaluated twenty-five items with a five-factor scale of
turnover intention.

In these proposed scales, turnover intentions are strongly associated with factors
such as job satisfaction [24], organisational commitment [25], and stress and burnout [26].
Schaufeli and colleagues [20] point out that indicators such as voluntary turnover intention
are conceptualised as latent changes in SEM models or aggregated into composite scales.
Table 1 provides a comparative overview of key psychometric instruments used to measure
voluntary turnover intentions, detailing their length, dimensional structure, scale format,
and validation evidence.

Table 1. Comparative overview of psychometric scales for voluntary turnover intentions.

Scal;é?:)lthor, Null::)lf; of Dimensionality Scale Type (\::;l iﬁjiifs Notes
Reliability, Most widely used
Mobley et al. [14] 3 Unidimensional  5-point Likert Predictive baseline scale; concise
Validity but limited in scope.
Separates cognitive
Tett & Meyer [20]  4-6 (varies) = Multidimensional =~ 5-point Likert Affective and intention from
Behavioral Intent emotional
antecedents.
. Avoidance, Explores motivational
Mae.rtz & ~24 (8 x 3) . E1gh't 5-point Likert Calculative, pafhs to quitting; rich
Campion [19] dimensions N . g :
ormative theoretical basis.
Two dimensions . . Job Context-§ensiti\{e
Lee et al. [21] ~12-16 5-point Likert Embeddedness, scale; validated in
(Push vs. Pull) . .
Intent to Leave  longitudinal studies.
Bothma & Construct Shortened validated
Roodt [22]— 6 Unidimensional ~ 5-point Likert Validity, scale; good internal
TIS-6 Reliability consistency (& > 0.8).
Recent
Ike et al. [23] 25 Five dimensions  5-point Likert FactoMréezileYeIa:liltdlty, Csvrigr;?;?ﬁé‘;ﬁ;;ie

robustness.

As shown in Table 1, shorter unidimensional instruments—such as Mobley et al.’s
three-item scale—offer parsimony and ease of administration but may lack the breadth to
capture multifaceted turnover drivers. In contrast, extensive multidimensional scales (e.g.,
Maertz & Campion’s eight-factor model or Ike et al.’s five-factor inventory) deliver richer
diagnostic insight at the cost of increased respondent burden. The choice of scale should,
therefore, balance theoretical comprehensiveness, empirical robustness (factorial validity,
reliability), and practical considerations related to survey length and predictive utility.

However, an increasing number of contemporary studies are linking psychometric
scale development with the construction of machine learning models. In measurement
scales used as datasets for machine learning, various variables—most commonly rated on
a 5-point Likert scale—are collected. Predictive analyses of this type frequently employ
algorithms such as logistic regression, support vector machines, and decision trees [27].

Despite the availability of numerous measurement instruments, existing validation
approaches often present methodological limitations. Traditional psychometric validation
focuses heavily on internal consistency and factorial validity, usually confirmed via con-
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firmatory factor analysis or structural equation modelling. However, these approaches
frequently neglect the external, predictive utility of the instruments, particularly their
performance in real-world classification or decision-making contexts. Moreover, item
retention decisions are commonly based solely on model fit indices (e.g., RMSEA, CFI),
which may inadvertently compromise the predictive capacity of the scale. Conversely,
machine learning-based validations typically prioritise accuracy but disregard the theo-
retical coherence of the construct, leading to a lack of interpretability or construct-level
insight. This bifurcation between theory-driven and data-driven validation creates a gap in
psychometric practice, where neither approach alone ensures both conceptual soundness
and practical effectiveness. The need to address this dual objective motivates the integrated
SEM-ML framework proposed in this study [28,29].

2.2. Structural Equation Modelling

Structural equation modelling (SEM) is an advanced statistical method for analysing
relationships between observed and latent variables. SEM combines features of factor
analysis and regression modelling, allowing for the testing of complex theoretical models
through the use of matrix equations [5]. An SEM model consists of two main components:

1.  The measurement model, which describes the relationship between latent variables
and observed variables according to Formula (1):

X = MG+ 0y = Ay +e 1)

where:

O  x,y—vectors of observed variables;

O ¢ and y—exogenous and endogenous latent variables;
O Ay, Ay—factor loading matrices;
O 0, e—measurement errors.
2. The structural model, which describes the relationships between latent variables, is as
follows (Formula (2)):
=By+T¢+¢ 2)
where:

B—matrix of regression coefficients among endogenous variables;

I'—matrix of regression coefficients from exogenous to endogenous variables;

¢—vector of structural errors.

The most commonly used method for parameter estimation in SEM is the Maximum
Likelihood (ML) method, which involves minimising function (3).

Fair = In [2(0)| — In |S] —0—tr(SZ’1> —p 3)

where:

X (0)—model-implied covariance matrix;

S—observed covariance matrix;

p—number of observed variables.

Alternative estimation methods include Generalised Least Squares (GLS), Unweighted
Least Squares (ULS), and Bayesian SEM [13]. The fit of an SEM model to the data is assessed
using multiple indices, such as those presented in Table 2 [30,31].
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Table 2. SEM model fit indices.

Index Formula or Description Interpretation
Chi-square(x2) @ =(N=1)Fu Eiigh p value (>0.05) indicates good
RMSEA. (Ropt Mean Square Error of  ax (e—df0) <0.05—very good fit .
Approximation) RMSEA = Tdf(N-1) 0.05-0.08—moderate fit
CFI (Comparative Fit Index) CEl =1 — max (x*—df,0) >0.95—very good fit

2
max (X baselineidfbaselinefo)

TLI (Tucker-Lewis Index)

Takes model complexity into account

(penalises complex models) >095—very good fit

GFI (Goodness-of-Fit Index)

Proportion of explained variance >0.90—very good fit

AGFI (Adjusted GFI) GFI adjusted for degrees of freedom  >0.90—very good fit
Information criteria (relative Lower AIC/BIC — better model

AIC/BIC .
measures) (only for model comparisons)

Source: [6].

The main advantages of SEM include the ability to model latent variables while
accounting for measurement error, testing complex theoretical hypotheses, and assessing
both direct and indirect effects. The most commonly cited limitations of the method are its
high sample size requirements (recommended N > 200), sensitivity to deviations from data
normality, and the possibility of fitting a model with low theoretical validity [32].

2.3. Machine Learning

Machine learning (ML) offers a range of algorithms for classification and regression
that allow for modelling relationships in data without the need to specify their functional
form strictly. The present article employs several key machine learning algorithms, includ-
ing naive Bayes, linear and nonlinear support vector machines, decision trees, k-nearest
neighbours, and logistic regression.

The first algorithm analysed is the naive Bayes classifier. This model is based on Bayes’
theorem and the assumption of conditional independence of features [33] (Formula (4)):

P(C)ITZq P(xi|C)

P(Ck|x) = P(x)

(4)

where:
Gdzie:
P( Cg|x)—probability of belonging to class Cy;
P(Cy)—prior probability of class;
P(x;|Cx)—conditional probability of feature x; given class Cy.
In the Gaussian classifier, a normal distribution of features is assumed (Formula (5)):

exp (_ (xi — .“k)2> (5)

2
2(7k

1
P(x; [ C) =
\/2mo?
The next algorithms addressed in this study are linear and nonlinear support vector

machines (SVMs). In the linear SVM model, for a dataset {(x;,y;)}*_,, where x; € R¥ and
y; € {—1,1}, the objective is to determine a decision function of the form f(x) = wlx+ b
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that separates the classes while simultaneously solving the optimisation problem defined
by the objective function (6) [34]:

PN S "
= C j 6
min (5 |[w]|”+ i;gl) (©)
Under the assumption that the following margin constraints are satisfied:
Yi (wai + b) >1-¢

g >0, Vi

In the mathematical context, nonlinear SVM addresses the classification problem in its
dual form by maximising the objective function (7):

n 1 n n
max Zl a;— 52 21 wjojyiyiK(x;, x7) )
i= i=1j=

subject to the folloing constraints: 0<«,;<C; y_7' ; a;y; = 0.
where K (x,-, xj) is a kernel function, e.g., RBE. Once the coefficients «; are determined, the
classification of a new observation x is based on function (8):

f(x) =) aiyK(xi, x) +b (8)
i=

In contrast to the linear variant, which operates directly on the original features,
nonlinear SVM uses a kernel function to transform the data space, allowing it to handle
more complex patterns more effectively [35].

Another algorithm applied in this study was decision trees. Decision trees are con-
structed based on data splits that maximise information gain [36]. This occurs for the
entropy function as follows (9):

C

H(S) = —; pilog, pi )

The information gain from splitting by an attribute is as follows (10):

Sl

IG(S,A)=H(S)— ), 5

veValues(A)

H(S,) (10)

where:

O  p,—frequency of class i;
O  S,—subset of data with value v of attribute A.

The article also applied the k-nearest neighbours (k-NN) method. In this algorithm,
for a given point, the closest training points are found (11) (e.g., using the Euclidean
metric) [37]:

d
d(x,x;) =[x —xill, = | L (x; — xij)° (11)

j=1
The decision is made through majority voting of the classes (12):

g=argmax Y, Uy =y) (12)
Y ieN()
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where 1(+) is an indicator function that takes the value 1 if the condition is met and 0
otherwise. The final algorithm applied in the article is logistic regression. This algorithm
models the probability of belonging to class 1 using the function [38] (13):

1

1 4 e~ (@Tx+Db) (13)

P(y=1Jx) = a(wa+ b) =
To fit the model to the data, the log-likelihood function is maximised, expressed as
follows (14):

n
max ) [y1log P(yilxi) + (1= yi)log (1= P(yilxi))] (14)
, y:1
Optimisation is performed, for example, using the gradient descent method.

2.4. Integration of SEM Models and Machine Learning Methods

Recent methodological innovations aim to combine the explanatory power of struc-
tural equation modelling (SEM) with the predictive potential of machine learning [39]. One
significant line of research focuses on enhancing SEM through regularisation and tree-based
algorithms—referred to as regularised SEM and SEM trees—to prevent overfitting and
manage high-dimensional sets of indicators [40]. Probabilistic SEM frameworks have begun
to incorporate ensemble learners to capture complex, nonlinear interactions among latent
variables, as exemplified by Super Learner Equation Modelling (SLEM), which integrates
super learner algorithms with path analysis for robust causal inference [41]. Partial least
squares SEM (PLS-SEM) is also routinely combined with classifiers—such as support vector
machines and random forests—to optimise both measurement validity and predictive
accuracy in domains such as marketing and supply chain management [42,43]. Bayesian
variants of SEM, enriched with machine learning routines, have demonstrated increased
estimation stability and predictive robustness, particularly in the context of small samples
or complex models [44]. Early hybrid approaches automated the item-reduction process
by concurrently evaluating multiple psychometric criteria and classification performance,
paving the way for more efficient scale refinement [45].

In psychometric research, integrating SEM diagnostics with ML-based feature selec-
tion has led to scalable procedures for constructing concise, high-performing measurement
instruments. Studies combining decision trees, support vector machines, and Naive Bayes
classifiers with confirmatory modelling have systematically evaluated the trade-off between
construct validity (e.g., RMSEA, CFI) and predictive utility (accuracy, AUC), facilitating the
elimination of redundant items [46]. Conceptual reviews advocate embedding ML feature
importance metrics within latent variable frameworks to preserve interpretability while
leveraging data-driven selection [47]. Furthermore, practitioners apply machine learning
optimisation techniques in test development to enhance item quality and respondent en-
gagement, underscoring the practical significance of SEM-ML integration in psychological
assessment. A growing consensus across these approaches highlights the promising poten-
tial of integrated SEM-ML methodologies for replicable, parsimonious, and empirically
robust scale evaluation [48].

3. Materials and Methods

Before performing the analyses, the dataset underwent a comprehensive data prepa-
ration process to ensure its suitability for both structural equation modelling (SEM) and
machine learning (ML). All responses from the 27-item questionnaire were screened for
missing values and outliers. Cases with incomplete or inconsistent responses were re-
moved, resulting in a final sample size of 854. The data were assessed for normality,
and, although Likert-type scales are ordinal, they were treated as continuous for SEM
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purposes, as is standard practice with large samples. For SEM, the observed variables
were standardised, and assumptions related to multivariate normality were examined to
validate the use of maximum likelihood estimation. In the context of machine learning,
the dataset was further preprocessed by normalising the features using min—-max scal-
ing to ensure comparability across items and improve model convergence. The binary
target variable—voluntary turnover intention—was extracted and coded consistently for
classification purposes. Stratified sampling techniques were applied during training—test
splits to preserve class distribution. These preparation steps ensured the reliability of both
theoretical modelling and predictive analytics.

The proposed method for evaluating measurement scales using structural equation
modelling and machine learning can be presented as a five-step procedure.

Step 1. Development of a dataset based on the prepared measurement scale.

After the measurement scale is developed, a questionnaire study is conducted on a se-
lected research sample. The respondents’ answers are collected into a dataset. Considering
the formal and substantive requirements of SEM methodology, the research sample should
not be smaller than 200 participants.

Step 2. Construction of a structural model in which the latent variable is the selected
psychometric construct.

In this step, an SEM model is developed consisting of two components:

1.  Measurement model—this model tests whether all the scale’s factors can be reduced
to a single component (the examined psychometric construct).

2. Structural model—this model tests the regression relationship between the analysed
factors and the label. In this case, the label is the dependent variable, and its predictors
are the factors from the psychometric scale.

At this research stage, it is necessary to determine the key SEM model fit indices,
especially XZ, RMSEA, CFI, and TLL In the proposed method, it is standardly assumed that
an acceptable model fit corresponds to an RMSEA value not exceeding 0.08. If the RMSEA
value exceeds 0.08, it indicates that the psychometric scale is not suitable for measuring the
selected psychometric construct. Although the developed method is primarily intended
to enhance the performance of well-constructed psychometric scales, improving the SEM
model to achieve the desired fit level is still possible even when the RMSEA slightly
exceeds 0.08.

The application of machine learning tools in human resource management (HRM)
has gained significant traction in recent years, particularly for tasks involving employee
retention, talent acquisition, and performance prediction [49]. In the context of volun-
tary turnover intention, ML techniques are increasingly used to identify subtle patterns
in employee survey data that may predict attrition risk. Studies have demonstrated the
effectiveness of algorithms such as logistic regression, decision trees, and support vector
machines in predicting turnover with high accuracy, often outperforming traditional statis-
tical methods. These models offer the added advantage of handling complex, nonlinear
relationships and large feature spaces commonly found in psychometric datasets. Conse-
quently, integrating ML algorithms into the scale evaluation process not only enhances
predictive accuracy but also aligns the research with modern HR analytics practices [50].

In the structural equation modelling (SEM) component, all variables from the question-
naire were treated as continuous and modelled as indicators of a single latent construct—
voluntary turnover intention. Each item was measured on a 5-point Likert scale and treated
as approximately continuous in line with common SEM practice [12]. The latent construct
was modelled using a reflective approach, with each observed item serving as an indicator
influenced by the underlying psychological factor. The dependent variable (label) used
in the structural model was binary, coded as 0 (no intention to leave) and 1 (intention to
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leave), based on a self-reported item in the survey. Model estimation was conducted using
the Maximum Likelihood (ML) method, which assumes multivariate normality and is
suitable for continuous observed variables. This method optimises the likelihood function
to estimate model parameters that best reproduce the observed covariance matrix. Given
the relatively large sample size (N = 854), the use of ML estimation was justified despite the
presence of ordinal data, as ML is considered robust under such conditions when sample
sizes are sufficient. All standard fit indices (e.g., RMSEA, CFI, TLI) were computed based
on the ML estimates.

Step 3. Selection of the best machine learning algorithm for predicting the selected
psychometric construct.

In this step of the method, a machine learning process is conducted on the dataset
using the following algorithms: naive Bayes, linear and nonlinear support vector machines,
decision trees, k-nearest neighbours, and logistic regression. To avoid the issue of “lucky
sampling”, each algorithm is evaluated using cross-validation and repeated random splits
of the data into training and test sets. For each algorithm, the average value of the prediction
quality metric accuracy is calculated across all learning processes, along with the standard
deviation of this metric. The algorithm with the highest average accuracy is then selected
for further analysis.

The selection of machine learning algorithms in this study was based on their estab-
lished utility in classification tasks within the domain of human resources and behavioural
prediction. Naive Bayes, despite its simplifying assumption of feature independence, offers
robustness and interpretability, especially when dealing with categorical or Likert-type
inputs [51]. Support Vector Machines (SVMs), both linear and nonlinear, are known for
their strong generalisation capabilities and effectiveness in handling high-dimensional data,
which is often characteristic of psychometric scales [52]. Decision trees provide a trans-
parent decision-making process that is particularly useful in applied HR contexts, albeit
sometimes at the cost of overfitting. The k-nearest neighbours algorithm, although sensitive
to feature scaling, is valuable in identifying local structure in datasets with ambiguous class
boundaries [53]. Finally, logistic regression remains a staple baseline model in predictive
HR analytics due to its interpretability and statistical grounding [54]. Together, this ensem-
ble of classifiers enables a robust comparison across a spectrum of model complexities and
underlying assumptions.

Step 4. Simulation of the impact of removing factors on the SEM model and the
effectiveness of the machine learning model.

In this step, SEM model fit simulations are conducted by iteratively removing items
from the scale. If the scale consists of n items, n SEM simulations are performed. The
difference between the initial RMSEA (with no items removed) and the RMSEA after item
removal is computed for each simulation.

Analogous simulations are carried out for the best-performing machine learning model
(as selected in Step 3). That is, items are sequentially removed from the machine learning
model, and the average accuracy metric is calculated after each removal. Differences
between accuracy before and after elimination are also determined.

In the structural equation modelling literature, it is common practice to eliminate items
solely based on improvements in fit indices (e.g., RMSEA, CFI, or TLI) [55,56]. Although
such a procedure may lead to a less complex model and a formally better fit, lowering the
RMSEA alone does not guarantee the maintenance or improvement of the scale’s predictive
capacity. In practice, removing even a single item may reduce the measurement tool’s
validity in terms of classification or forecasting, thereby limiting its practical utility.

Therefore, the proposed method balances the SEM fit criterion with an assessment of
each variable’s contribution to the effectiveness of the machine learning model. Machine
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learning enables the quantification of the impact of removing a particular item on predic-
tion quality (measured, for example, by accuracy), allowing for the selection of variables
whose elimination does not deteriorate—and in the best case even improves—both SEM
fit and classification quality. As a result, the scale achieves an optimal compromise: it
retains theoretical construct coherence (good fit indices) while preserving the tool’s real
predictive power.

The decision thresholds of ARMSEA > 0 and AAccuracy < 0 were adopted to ensure
a balanced trade-off between theoretical model fit and predictive utility. A non-negative
change in RMSEA (ARMSEA > 0) indicates that removing an item does not worsen the
structural model’s approximation error and may even improve overall fit. This aligns
with the goal of refining the scale without compromising construct validity. Similarly, a
non-positive change in prediction accuracy (AAccuracy < 0) ensures that the classification
performance of the ML model is not degraded by the removal of an item. These thresholds
were intentionally conservative to avoid overfitting and to maintain both psychometric
rigour and applied classification capability. Their combined use allows for identifying
items whose exclusion simultaneously preserves or improves both aspects of scale quality.

Step 5. Refinement of the Psychometric Scale Based on SEM-ML Simulations.

Following the simulations conducted in Step 4, variables are identified whose removal
improves one of the two components—SEM model fit or machine learning prediction
quality—without simultaneously worsening the other. According to the proposed method,
such variables should be excluded from the psychometric scale. This results in at least a
non-deteriorated SEM model fit and no decrease in the predictive quality of the selected
psychometric construct, with the additional benefit of a shortened scale.

In the most favourable scenario, beyond reducing the number of items in the mea-
surement scale (which is a significant benefit in itself), both the SEM model fit and the
predictive accuracy of the psychometric construct using machine learning are improved.

4. Results

Step 1. Development of a dataset based on the prepared measurement scale.

Table 3 presents a custom-developed measurement scale regarding the occurrence of
employee voluntary turnover intentions (after the whitening process of grey numbers).

Additionally, for machine learning purposes in particular, the survey questionnaire
included a question asking whether the respondent demonstrates an intention to leave
their job voluntarily. The survey was conducted between 1 August and 30 September 2024.
The sample included in the present study comprised 854 individuals.

Step 2. Construction of a structural model in which the latent variable is the occurrence
of employee voluntary turnover intention

The developed SEM model consisted of two components:

e  Measurement model—the latent factor is voluntary turnover intention, onto which all
27 items are loaded. This model tests whether all 27 items can be reduced to a single
component (turnover intention);

e  Structural model—this model tests the regression relationship between the 27 items
and the label, which is the occurrence of turnover intention. The label is the dependent
variable in this model, and all 27 items are predictors.

The key parameters of the measurement and structural models are presented in Table 4.
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Table 3. Custom scale for measuring employee voluntary turnover intentions.

Variable Name Scale for the Variable
Attribute Evaluation
Very Poor Poor Average Good Very Good

X1 salary 1 2 3 4 5
Xp job satisfaction 1 2 3 4

X3 sense of fairness 1 2 3 4

% oportunites 1 2 3 4 5

professional
X5 development 1 2 3 4 5
opportunities

X6 work performance 1 3 5
X7 working conditions 1

X8 team atmosphere 1

o Swembpwit s,
X11 job stability 1 2 3 4 5
X1 iﬁ(irg;:;;i?on within 1 5 3 4 5
X13 work-life balance 1 3 5
X14 independence at work 1 3 5
X5 x\(;iof autonomy at 1 ’ 3 4 5
X16 job responsibility 1

X17 work engagement 1

X19 flexible working hours 1 2 3 4 5
X200 sense of burnout 1 2 3 4 5
X1 workload 1 2 3 4 5
X2 commuting time 1 2 3 4 5
X23 recognition at work 1 2 3 4 5
o oo N
X25 job monotony 1 3 5
X26 employer reputation 1

Xp7 organisational culture 1
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Table 4. Key parameters of the measurement and structural models.

Indicator Estimate Std. Err z-Value p-Value
x1~all scale items 1.000 - - -
xp~all scale items 1.222 0.0538 22.702 <0.001
x3~all scale items 1.224 0.0535 22.875 <0.001
xg~all scale items 1.110 0.0556 19.965 <0.001
xs~all scale items 1.145 0.0536 21.356 <0.001
xo7~all scale items 1.042 0.0484 21.498 <0.001

Path/Variance Estimate Std. Err z-Value p-Value
label~all scale items —0.332 0.0199 —16.671 <0.001
all scale items~~all scale 0.497 0.0429 11.582 <0.001
items (variance)
label~~label (variance) 0.104 0.00514 20.233 <0.001

In the measurement model, all loadings are statistically significant (p < 0.001) and
generally high (>0.8), which confirms that each indicator effectively reflects the latent
construct. In the structural model, we examine the influence of this construct on the label
(turnover intention). The negative coefficient (estimate = —0.332, p < 0.001) indicates that
a higher level of the latent construct is associated with a lower probability of turnover

intention. Both variances are significant, suggesting meaningful variability in both the

construct and the intention to leave. The SEM model fit indices are presented in Table 5.

Table 5. SEM model fit indices for the occurrence of employee voluntary turnover intentions.

Indicator Value
Chi? 1961.138
df 350
p-value 0
CFI 0.878
TLI 0.868
RMSEA 0.073
GFI 0.856
AGFI 0.844
NFI 0.856
AIC 107.4
BIC 373.4

The overall model fit can be considered good despite the statistically significant Chi?
test (p < 0.001)—a typical result for large samples. The key RMSEA index of 0.073 falls
below the 0.08 threshold, indicating an acceptable approximation error. The CFI = 0.878

and TLI = 0.868, though slightly below the conventional 0.90 cutoff, still suggest satisfactory
model fit. Additionally, GFI = 0.856, AGFI = 0.844, and NFI = 0.856 confirm that the model
structure adequately reflects the data. The AIC and BIC values can be used for comparison

with alternative models, but, in themselves, they raise no concerns.
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Step 3. Selection of the Best Machine Learning Algorithm for Predicting the Occurrence
of Voluntary Employee Turnover.

Following the methodology outlined in the previous section, a training process was
carried out using the following algorithms: naive Bayes, linear and nonlinear support vector
machines, decision trees, k-nearest neighbours, and logistic regression. Cross-validation
was used in the analysis. Table 6 presents the training process results for all algorithms,
along with the standard deviations of the accuracy metric.

Table 6. Performance of applied machine learning algorithms in predicting voluntary employee
turnover intentions.

Algorithm Accuracy (Mean) Standard Deviation of Accuracy
RBF SVM 0.862 0.017
Logistic Regression 0.857 0.017
Linear SVM 0.854 0.015
Naive Bayes 0.835 0.033
K-Nearest Neighbor 0.834 0.029
Decision Tree 0.810 0.022

Based on the obtained results, it can be concluded that the analysed models perform
well in predicting the occurrence of voluntary employee turnover intentions. Each of the
analysed models demonstrates over 80% accuracy. For further research, the nonlinear
support vector machine algorithm was the most effective of the analysed algorithms.

Step 4. Simulations of the impact of factor removal on the SEM model and on the
effectiveness of the machine learning model.

At the beginning of this step, simulations of the SEM model were conducted by
successively excluding individual items from the scale. The results of the SEM model fit,
measured by changes in the RMSEA index following successive reductions, are presented
in Table 7.

Figure 2 illustrates the ARMSEA values resulting from the iterative removal of each
item, with x4 yielding the largest improvement and x9 and x;g producing smaller yet still
favourable reductions.

X4
X5
X1

s g 5o g 2 o2 g
E £ 0% = L = &

g
Removed Variable

X1
X16
X3
X7
X25
X271
X26
Xz

4 2 8 b=} 2
& K8 = %

x17

£

Figure 2. Change in RMSEA after removing each item.
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Table 7. Change in RMSEA after removing subsequent variables from the measurement scale.

Removed ARMSEA AAIC ABIC
X4 0.00506 —3.19403 —12.69389
X5 0.00430 —3.26161 —12.76147
X14 0.00236 —3.43795 —12.93782
X17 0.00165 —3.50375 —13.00361
X1g 0.00083 —3.58040 —13.08026
X6 0.00054 —3.60751 —13.10737
Xo 0.00037 —3.62397 —13.12383
X19 0.00001 —3.65796 —13.15783
X20 —0.00016 —3.67355 —13.17341
03 —0.00027 —3.68472 —13.18458
X11 —0.00038 —3.69464 —13.19450
X15 —0.00050 —3.70670 —13.20656
X10 —0.00068 —3.72347 —13.22333
o1 —0.00076 —3.73177 ~13.23163
X2 —0.00098 —3.75251 —13.25237
X6 —0.00104 —3.75881 —13.25867
Xg —0.00105 —3.75924 —13.25910
X4 —0.00118 —3.77198 —13.27184
X1 —0.00119 —3.77312 —13.27298
X1 —0.00121 —3.77500 —13.27487
X13 —0.00122 —3.77547 —13.27533
X3 —0.00133 —3.78626 —13.28612
X7 —0.00136 —3.78919 —13.28905
X5 —0.00139 —3.79226 ~13.29212
Xo7 —0.00166 —3.81793 ~13.31779
X6 —0.00171 —3.82308 —13.32295
) —0.00193 —3.84489 —13.34475

This visual confirms that excluding x4, X9, and x;g consistently lowers or maintains
RMSEA, reinforcing their selection for removal under the joint SEM-ML optimisation
criteria. To determine whether the removal of specific items significantly improved model
fit, chi-square difference tests (x*) were conducted and changes in the Comparative Fit
Index (ACFI) were calculated. The removal of item x4 produced the strongest effect:
Ax?* = 344.15 with Adf = 26 (p < 0.001) and ACFI = 0.017, meeting both the statistical cri-
terion (p < 0.05) and the practical threshold (ACFI > 0.01). For items x9 and X;g, the X2
tests showed minor decreases (p > 0.05) and ACFI values below 0.01, indicating that the
model fit improvements were not statistically significant. Nonetheless, both items reduced
RMSEA (ARMSEA = 0.00037 and 0.00083, respectively) and lowered the AIC/BIC informa-
tion criteria, while their removal did not negatively affect ML classification performance.
Therefore, considering the parallel criteria of model fit, parsimony, and preservation of
predictive power, we recommend eliminating x4, X9, and x;g as the optimal approach to
scale simplification.
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In the next step, the impact of removing successive variables on the accuracy metric
of the best-performing model—the nonlinear support vector machine—was verified. The
results of these simulations are presented in Table 8.

Table 8. Change in the accuracy metric after removing subsequent variables from the measurement

scale.

Removed Variable CV Accuracy CV Accuracy Std  CV Accuracy Drop
X10 0.865 0.022 —0.004
X6 0.865 0.016 —0.004
X11 0.864 0.019 —0.002
X23 0.864 0.014 —0.002
X13 0.863 0.020 —0.001
X25 0.863 0.017 —0.001
X9 0.863 0.023 —0.001
Xg 0.863 0.011 —0.001
Xo7 0.863 0.015 —0.001
X4 0.862 0.021 —0.000
X18 0.862 0.018 0.000
X21 0.862 0.022 0.000
X14 0.861 0.018 0.001
X04 0.861 0.017 0.001
X5 0.859 0.018 0.002
X19 0.859 0.015 0.002
X2 0.859 0.017 0.002
X7 0.858 0.023 0.004
X1 0.858 0.016 0.004
X15 0.858 0.018 0.004
X12 0.858 0.016 0.004
X20 0.858 0.015 0.004
X22 0.857 0.019 0.005
X3 0.857 0.020 0.005
X17 0.856 0.015 0.006
X26 0.856 0.015 0.006
X16 0.855 0.018 0.007

Figure 3 plots the difference in mean 5-fold cross-validation accuracy (ACV Accu-
racy) obtained by removing each item in turn, revealing that most values cluster tightly
around zero.
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Figure 3. Change in 5-fold CV accuracy following item removal.

As the plot shows, the removal of x4, X9, and x13 produces negligible shifts in accuracy
(ACV = 0), visually confirming the paired t-test and bootstrap findings that the ML model’s
predictive performance remains stable despite scale simplification.

To assess the stability of the ML model’s accuracy after item removal, two complemen-
tary techniques were applied: the paired t-test for comparing five 5-fold cross-validation re-
sults and the estimation of 95% confidence intervals using the bootstrap method (1000 repli-
cations). Both methods consistently demonstrated that the mean accuracy differences
following the removal of x4, X9, and x;3 were near zero, with p-values far from the signifi-
cance threshold (p > 0.05). This form of statistical validation is particularly valued in ML
research as it does not rely solely on point estimates of accuracy but also accounts for their
variability and uncertainty. These findings indicate that the item selection process—while
reducing the scale and simplifying the model—does not adversely affect its predictive
performance. As a result, a more concise and parsimonious scale is achieved without
compromising classification power, which provides strong justification for the practical
application of the proposed method.

Step 5. Improvement of the psychometric scale based on the conducted SEM-ML
simulations.

In the next step, those factors were identified whose potential removal neither worsens
the fit of the SEM model (i.e., leads to a decrease in the RMSEA index or maintains it at
the same level) nor reduces the predictive performance of the machine learning model
(measured by the average accuracy value in the cross-validation method).

It was found that, out of the 27 analysed items in the scale measuring turnover
intention, three indicators met the exclusion criteria. These factors are presented in Table 9.

Table 9. Factors to be removed from the measurement scale based on the SEM-ML method.

Decrease in Average ML Increase in Average RMSEA
Model Accuracy (Prediction  (Fit Error Worsening) in the
Removed Variable = Quality Worsening) Caused SEM Model Caused by Its

by Its Presence in the Presence in the

Measurement Scale Measurement Scale
Xy 0.00118 0.00037
Xy 0.00001 0.00506
X1s 0.00000 0.00083

Table 9 identifies three items—x4 (promotion opportunities), xg (recognition and re-
wards), and x;g (remote work availability)—whose exclusion from the “voluntary turnover
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intentions” scale does not deteriorate either the measurement validity assessed by SEM
(ARMSEA > 0) or the predictive power of the best ML model (Aaccuracy < 0). Notably,
the removal of x9 and x;3 even leads to a slight reduction in RMSEA without any loss
of classification performance, while the removal of x4 results in the most considerable
improvement in model fit (ARMSEA = —0.00506) with a negligible change in prediction
accuracy (—0.00001).

These findings offer meaningful insight into the structure of the turnover intention
construct. Item x4 reflects perceptions of career advancement, which, in this sample,
appear to play a minor role in influencing voluntary departure. Item xg captures employee
recognition, which may overlap conceptually with other variables like job satisfaction.
Item x;3 represents access to remote work—a timely but possibly redundant factor in
this organisational context, potentially subsumed by broader constructs like work-life
balance. Their exclusion leads to a more concise and psychometrically sound scale without
compromising theoretical coherence or practical utility.

In the final step, a SEM model was constructed, and the accuracy metric was calculated
for the measurement scale after removing factors Xo, X4, and Xig. Table 10 presents the fit
indices of the new, simplified SEM model for voluntary employee turnover intention.

Table 10. Fit indices of the SEM model for voluntary employee turnover intention after removing the
three variables Xg, X4, and Xig.

Indicator Value
Chi? 1278.480
df 275
p-value 0
CFI 0.911
TLI 0.903
RMSEA 0.065
GFI 0.890
AGFI 0.880
NFI 0.890
AIC 97.0
BIC 3345

The results presented in the table for the simplified SEM model (after removing
Xo, X4, and X;g) show a clear improvement in all key fit indices compared to the initial
model. RMSEA decreased from 0.073 to 0.065, indicating a significant enhancement in
model quality. At the same time, CFI increased from 0.878 to 0.911, and TLI from 0.868
to 0.903—both now exceed the commonly accepted threshold of 0.90, signalling a strong
representation of the theoretical structure. GFI (0.856 — 0.890), AGFI (0.844 — 0.880), and
NFI (0.856 — 0.890) also improved by more than 0.03 points, confirming the overall better
quality of the model. Lower values of the information criteria AIC (from 107.4 to 97.0) and
BIC (from 373.4 to 334.5) indicate that a more economical model was obtained with fewer
parameters, offering a better balance between parsimony and accuracy.

The new machine learning model (nonlinear support vector machine), without vari-
ables Xg, X4, and Xyg, achieved an average accuracy metric (calculated via cross-validation)
of 0.8630 with a standard deviation of 0.017565.

The predictive performance of the selected ML classifier (nonlinear SVM) for the
shortened scale also appears promising—the mean accuracy increased from 0.862 to 0.863,
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and the standard deviation remained at a similar level. Although the accuracy gain is
modest, it demonstrates that eliminating the three variables improved SEM fit without
any loss, and even with a slight enhancement of the ML model’s predictive power. These
results confirm that the applied method for item selection achieves its intended trade-off: it
yields a more concise and theoretically coherent measurement tool while maintaining (and
even slightly improving) its practical utility in classifying turnover intentions.

The results of this study demonstrate that integrating structural equation modelling
with machine learning allows for a more nuanced and evidence-based refinement of
psychometric scales. The removal of three items from the original 27-item turnover intention
scale resulted in improved model fit indices (e.g., RMSEA dropped from 0.073 to 0.065) and
maintained or slightly enhanced classification accuracy (from 0.862 to 0.863). These findings
highlight the dual benefit of the proposed approach: a scale that is both theoretically
coherent and empirically predictive.

From a practical standpoint, the method supports researchers and HR professionals
in identifying items that contribute marginally to construct measurement or predictive
accuracy. This leads to more efficient and interpretable scales, reducing respondent burden
and improving deployment in real-world contexts. In organisational settings, particularly
in human capital management, the ability to reliably predict voluntary turnover intentions
using a leaner and validated instrument has clear operational value, supporting proactive
retention strategies and data-driven workforce planning.

Moreover, the approach offers a replicable framework that can be generalised to other
constructs beyond turnover intention. By aligning theoretical psychometrics with algorithmic
performance assessment, the method promotes a more integrated paradigm for instrument
development, bridging the gap between conceptual modelling and applied analytics.

5. Conclusions

This article makes a significant contribution to the field of applied mathematics by ex-
tending the methodology of psychometric scale evaluation through an integrated approach
that combines covariance-based SEM with machine learning algorithms. By proposing
a general algorithm that simultaneously assesses the impact of individual indicators on
model fit measures (RMSEA, CFI, TLI) and their role in classification performance (ac-
curacy), this article sheds new light on the trade-offs between construct validity and the
practical utility of measurement tools. Unlike traditional studies, where SEM optimisation
and predictive validation are treated separately, the proposed procedure integrates SEM
parameter estimation (via maximum likelihood) with variable selection processes in the
context of classifiers such as nonlinear SVMs, logistic regression, and decision trees. This
approach enriches the theoretical foundations of structural equation modelling with an
algorithmic learning perspective and demonstrates how optimisation tools and simulta-
neous data analysis can be used to construct more concise and effective psychometric
scale structures.

From a practical standpoint, the method provides researchers and HR professionals
with a useful tool for optimising the length and validity of applied scales. It enables
the identification of items whose exclusion leads to maintained or improved structural
fit without degrading the predictive capacity of ML models, ultimately resulting in a
shorter and more easily implementable questionnaire. In the context of human capital
management, this allows for faster and more precise diagnosis of employee turnover
intentions under limited research resources and reduces respondent burden. The case
study on voluntary turnover intentions, conducted with a sample of over 850 individuals,
demonstrates that removing three indicators from a 27-item scale is possible without any
significant negative impact on construct validation or predictive accuracy. Crucially, the
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proposed SEM-ML pipeline is not tied to a specific domain: by abstracting the item-removal
and retraining steps into a generalisable algorithmic routine, it can be applied to any
psychometric instrument—whether measuring consumer preferences, clinical symptoms,
or educational outcomes. This flexibility underscores the method’s potential for broad
adoption across different research areas and practical settings. As a result, the tool becomes
more economical and adaptable, while organisations benefit from a scale better suited for
the rapid identification of turnover risk.

At the same time, practitioners should be mindful of the inherent tension between
theory-driven SEM and data-driven ML: the SEM component demands a clearly specified,
interpretable latent structure, whereas the ML component optimises purely for predictive
accuracy. Balancing these objectives requires careful judgment—avoiding overfitting in ML
while preserving theoretical coherence in SEM—which remains a non-trivial challenge for
future refinements of the framework.

Despite its clear advantages, the developed method has certain limitations. First, the
application of covariance-based SEM assumes compliance with sample size and distribu-
tion normality requirements—conditions not always met in field research. Second, the ML
analysis was limited to selected classifiers and the accuracy metric; alternative performance
measures were not considered, which may affect optimal variable selection. Additionally,
the procedure is based on cross-sectional data and cross-validation, which does not elim-
inate the potential for overfitting to a specific sample. Finally, this study pertains to one
specific turnover intention scale—generalising the results to other psychometric tools or
organisational cultures requires further verification.

The methodological development should progress in several directions. First, it would
be valuable to explore the adaptation of the procedure in the context of PLS-SEM or Bayesian
SEM, allowing application in complex models and smaller samples. Second, expanding
the range of ML algorithms and evaluation metrics (including multiclass scenarios or
continuous data) would enable a more comprehensive assessment of the predictive utility
of scales. Moreover, longitudinal analysis using panel data could reveal how stable the
selection recommendations are over time and what factors influence the variability of
turnover intention intensity. Finally, applying the method to areas beyond human resource
management—such as social psychology or consumer research—would allow verification
of the universality and scalability of the proposed approach. Such a broadening of research
horizons would contribute to the fuller integration of applied mathematics and machine
learning techniques in the process of creating and validating measurement tools.
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