Genetic Algebras Associated with the SIR Model
Abstract
1. Introduction
2. Preliminaries
- i.
- for any ;
- ii.
- and for any ;
- iii.
- There are two adaptations of the Kolmogorov–Chapman equation’s analogue: for the initial point and such that , one has
- (iiiA)
- (iiiB)
3. Construction of Quadratic Stochastic Process
4. Limiting Behavior of Quadratic Stochastic Processes
5. Limiting Genetic Algebras
5.1. Derivations
- (i)
- if , consequently the derivations reduce to a trivial case.
- (ii)
- if , under this condition, the derivation is non-trivial, offered by
5.2. Automorphisms
- (i)
- If , then the non-trivial automorphism is given as
- (ii)
- If , then there is a non-trivial automorphism given by
6. Rota–Baxter Operator
- (1)
- Let , then Rota–Baxter operator is given by
- (i)
- if , then
- (ii)
- if , then
- (iii)
- if and , then
- (2)
- Let , then Rota–Baxter operator takes the following form
- (i)
- if , then
- (ii)
- if , then
7. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Kermack, W.O.; McKendrick, A.G. A contribution to the mathematical theory of epidemics. Proc. R. Soc. London. Ser. A Contain. Pap. Math. Phys. Character 1927, 115, 700–721. [Google Scholar]
- Wu, J.T.; Leung, K.; Leung, G.M. Nowcasting and forecasting the potential domestic and international spread of the 2019-nCoV outbreak originating in Wuhan, China: A modelling study. Lancet 2020, 395, 689–697. [Google Scholar] [CrossRef]
- Chen, D.; Lü, L.; Shang, M.S.; Zhang, Y.C.; Zhou, T. Identifying influential nodes in complex networks. Phys. A Stat. Mech. Its Appl. 2012, 391, 1777–1787. [Google Scholar] [CrossRef]
- Cai, Y.; Kang, Y.; Banerjee, M.; Wang, W. A stochastic SIRS epidemic model with infectious force under intervention strategies. J. Differ. Equ. 2015, 259, 7463–7502. [Google Scholar] [CrossRef]
- Wang, W.; Liu, Q.H.; Zhong, L.F.; Tang, M.; Gao, H.; Stanley, H.E. Predicting the epidemic threshold of the susceptible-infected-recovered model. Sci. Rep. 2016, 6, 24676. [Google Scholar] [CrossRef]
- Crocker, A.; Strömbom, D. Susceptible-Infected-Susceptible type COVID-19 spread with collective effects. Sci. Rep. 2023, 13, 22600. [Google Scholar] [CrossRef]
- Putra, S.; Mu’Tamar, K.; Zulkarnain, K. Estimation of Parameters in the SIR Epidemic Model Using Particle Swarm Optimization. Am. J. Math. Comput. Model. 2019, 4, 83–93. [Google Scholar] [CrossRef]
- Medvedeva, M.; Simos, T.E.; Tsitouras, C.; Katsikis, V.N. Direct estimation of SIR model parameters through second-order finite differences. Math. Methods Appl. Sci. 2020, 44, 3819–3826. [Google Scholar] [CrossRef]
- Lazzizzera, I. An Analytic Approximate Solution of the SIR Model. arXiv 2020, arXiv:2011.07494. [Google Scholar] [CrossRef]
- Liu, P.; Hendeby, G.; Gustafsson, F.K. Joint Estimation of States and Parameters in Stochastic SIR Model. In Proceedings of the IEEE International Conference on Multisensor Fusion and Integration for Intelligent Systems (MFI), Bedford, UK, 20–22 September 2022; pp. 1–6. [Google Scholar]
- Bernstein, S. Solution of a mathematical problem connected with the theory of heredity. Ann. Math. Stat. 1942, 13, 53–61. [Google Scholar] [CrossRef]
- Holgate, P. The Interpretation of derivations in genetic algebras. Linear Algebra Appl. 1987, 85, 75–79. [Google Scholar] [CrossRef]
- Rozikov, U.A. Population Dynamics: Algebraic and Probabilistic Approach; World Scientific: Singapore, 2022. [Google Scholar]
- Kesten, H. Quadratic transformations: A model for population growth. II. Adv. Appl. Probab. 1970, 2, 179–228. [Google Scholar] [CrossRef]
- Mukhamedova, F.; Mukhamedov, F. Stability and robustness of kinetochore dynamics under sudden perturbations and stochastic in uences. Sci. Rep. 2025, 15, 14883. [Google Scholar] [CrossRef]
- Ganikhodzhaev, R.; Mukhamedov, F.; Rozikov, U. Quadratic stochastic operators and processes: Results and open problems. Inf. Dim. Anal. Quantum Probab. Relat. Top. 2011, 14, 279–335. [Google Scholar] [CrossRef]
- Mukhamedov, F.; Ganikhodjaev, N. Quantum Quadratic Operators and Processes; Springer: Berlin, Germany, 2015; Volume 2133. [Google Scholar]
- Ganikhodzhaev, N.N. On stochastic processes generated by quadratic operators. J. Theor. Prob. 1991, 4, 639–653. [Google Scholar] [CrossRef]
- Ganikhodzhaev, N.; Akin, H.; Mukhamedov, F. On the ergodic principle for Markov and quadratic Stochastic Processes and its relations. Linear Algebra Appl. 2006, 416, 730–741. [Google Scholar] [CrossRef]
- Adilova, F.; Jamilov, U.; Reinfelds, A. On discrete-time models of network worm propagation generated by quadratic operators. Math. Model. Anal. 2023, 28, 194–217. [Google Scholar] [CrossRef]
- Jamilov, U.; Ladra, M. Evolution algebras and dynamical systems of a worm propagation model. Linear Multilinear Algebra 2022, 70, 4097–4116. [Google Scholar] [CrossRef]
- Etherington, I.M.H. II.—Non-Associative algebra and the symbolism of genetics. Proc. R. Soc. Edinb. Sect. B Biol. Sci. 1941, 61, 24–42. [Google Scholar] [CrossRef]
- Ganikhodzhaev, R.; Mukhamedov, F.; Pirnapasov, A.; Qaralleh, I. On genetic Volterra algebras and their derivations. Commun. Algebra 2018, 46, 1353–1366. [Google Scholar] [CrossRef]
- Lyubich, Y.I. Mathematical Structures in Population Genetics; Springer: Berlin, Germany, 1992. [Google Scholar]
- Worz-Busekros, A. Algebras in Genetics; Springer: Berlin, Germany, 1980; Volume 36. [Google Scholar]
- Reed, M. Algebraic structure of genetic inheritance. Bull. Am. Math. Soc. 1997, 34, 107–130. [Google Scholar] [CrossRef]
- Qaralleh, I.; Mukhamedov, F. Local derivations and Rota-Baxter operators of quantum Lotka-Volterra algebras on M2(C). Gulf J. Math. 2024, 17, 239–260. [Google Scholar] [CrossRef]
- Holgate, P. Genetic algebras satisfying Bernstein’s stationarity principle. J. Lond. Math. Soc. 1975, 9, 613–623. [Google Scholar] [CrossRef]
- Jenks, R.D. Quadratic differential systems for interactive population models. J. Differ. Equ. 1969, 5, 497–514. [Google Scholar] [CrossRef]
- Mukhamedov, F.; Supar, N.A. On marginal processes of quadratic stochastic processes. Bull. Malays. Math. Sci. Soc. 2015, 38, 1281–1296. [Google Scholar] [CrossRef]
- Ladra, M.; Rozikov, U.A. Flow of finite-dimensional algebras. J. Algebra 2017, 470, 263–288. [Google Scholar] [CrossRef]
- Mukhamedov, F.; Syam, S.M.; Qaralleh, I. A flow of quantum genetic Lotka-Volterra algebras on M2(C). J. Geom. Phys. 2023, 190, 104854. [Google Scholar] [CrossRef]
- Baxter, G. An analytic problem whose solution follows from a simple algebraic identity. Pac. J. Math 1960, 10, 731–742. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Qaisar, T.; Mukhamedov, F.; Hasan, M.A.; Amini, M.S. Genetic Algebras Associated with the SIR Model. AppliedMath 2025, 5, 111. https://doi.org/10.3390/appliedmath5030111
Qaisar T, Mukhamedov F, Hasan MA, Amini MS. Genetic Algebras Associated with the SIR Model. AppliedMath. 2025; 5(3):111. https://doi.org/10.3390/appliedmath5030111
Chicago/Turabian StyleQaisar, Taimun, Farrukh Mukhamedov, Mahmoud Alhaj Hasan, and Mhd Safouh Amini. 2025. "Genetic Algebras Associated with the SIR Model" AppliedMath 5, no. 3: 111. https://doi.org/10.3390/appliedmath5030111
APA StyleQaisar, T., Mukhamedov, F., Hasan, M. A., & Amini, M. S. (2025). Genetic Algebras Associated with the SIR Model. AppliedMath, 5(3), 111. https://doi.org/10.3390/appliedmath5030111