A Refined Inertial-like Subgradient Method for Split Equality Problems
Abstract
1. Introduction
2. Preliminaries
- (P1)
- Additionally, there is
- (P2)
- (P3)
3. Refined Algorithm for Split Equality Variational Inequality and Fixed Point Problems
- (C1) Let the sets B and E be non-empty, closed, and convex subsets of the real Hilbert spaces and , respectively.
- (C2) Let and be quasi-monotone, uniformly continuous, and and , whenever and are sequences in B and E, respectively, such that and .
- (C3) Let and be quasi-nonexpansive mappings such that and are demiclosed at zero.
- (C4) Let and be bounded linear mappings and let and be adjoints of X and Y, respectively, where is another real Hilbert space.
- (C5) Let .
- (C6) Let and be the sequences satisfying and , where with and , for some .
Proposed Inertial-like Subgradient Extragradient Algorithm
4. Numerical Examples
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Banach, S. Sur les operations dans les ensembles abstraits et leur application aux equations integrales. Fundam. Math. 1922, 3, 133–181. [Google Scholar] [CrossRef]
- Stampacchia, G. Formes bilineaires coercitives sur les ensembles convexes. Comptes Rendus Hebdomadaires Des Seances De L Academie Des Sciences 1964, 258, 4413. [Google Scholar]
- Fichera, G. Problemi Elastostatici con Vincoli Unilaterali: Il Problema di Signorini con Ambigue Condizioni al Contorno; Accademia nazionale dei Lincei: Roma, Italy, 1964. [Google Scholar]
- Moudafi, A. Alternating CQ-algorithm for convex feasibility and split fixed-point problems. J. Nonlinear Convex. Anal. 2014, 15, 809–818. [Google Scholar]
- Byrne, C. A unified treatment of some iterative algorithms in signal processing and image reconstruction. Inverse Probl. 2003, 20, 103. [Google Scholar] [CrossRef]
- Combettes, P.L. The convex feasibility problem in image recovery. In Advances in Imaging and Electron Physics; Elsevier: Amsterdam, The Netherlands, 1996; Volume 95, pp. 155–270. [Google Scholar]
- Korpelevich, G.M. The extragradient method for finding saddle points and other problems. Matecon 1976, 12, 747–756. [Google Scholar]
- Censor, Y.; Gibali, A.; Reich, S. Strong convergence of subgradient extragradient methods for the variational inequality problem in Hilbert space. Optim. Methods Softw. 2011, 26, 827–845. [Google Scholar] [CrossRef]
- Tseng, P. A modified forward-backward splitting method for maximal monotone mappings. SIAM J. Control Optim. 2000, 38, 431–446. [Google Scholar] [CrossRef]
- Tan, B.; Cho, S.Y. Inertial extragradient algorithms with non-monotone stepsizes for pseudomonotone variational inequalities and applications. Comput. Appl. Math. 2022, 41, 121. [Google Scholar] [CrossRef]
- Tan, B.; Zhou, Z.; Li, S. Viscosity-type inertial extragradient algorithms for solving variational inequality problems and fixed point problems. J. Appl. Math. Comput. 2022, 68, 1387–1411. [Google Scholar] [CrossRef]
- Sunthrayuth, P.; Adamu, A.; Muangchoo, K.; Ekvittayaniphon, S. Strongly convergent two-step inertial subgradient extragradient methods for solving quasi-monotone variational inequalities with applications. Commun. Nonlinear Sci. Numer. Simul. 2025, 150, 108959. [Google Scholar] [CrossRef]
- Zhao, J. Solving split equality fixed-point problem of quasi-nonexpansive mappings without prior knowledge of operators norms. Optimization 2015, 64, 2619–2630. [Google Scholar] [CrossRef]
- Kwelegano, K.M.; Zegeye, H.; Boikanyo, O.A. An Iterative method for split equality variational inequality problems for non-Lipschitz pseudomonotone mappings. Rendiconti del Circolo Matematico di Palermo Series 2 2022, 71, 325–348. [Google Scholar] [CrossRef]
- Zheng, L. A double projection algorithm for quasimonotone variational inequalities in Banach spaces. J. Inequalities Appl. 2018, 2018, 256. [Google Scholar] [CrossRef] [PubMed]
- Ye, M.; He, Y. A double projection method for solving variational inequalities without monotonicity. Comput. Optim. Appl. 2015, 60, 141–150. [Google Scholar] [CrossRef]
- Cottle, R.W.; Yao, J.C. Pseudo-monotone complementarity problems in Hilbert space. J. Optim. Theory Appl. 1992, 75, 281–295. [Google Scholar] [CrossRef]
- Rahman, L.U.; Arshad, M.; Thabet, S.T.M.; Kedim, I. Iterative construction of fixed points for functional equations and fractional differential equations. J. Math. 2023, 2023, 6677650. [Google Scholar] [CrossRef]
- Ullah, K.; Thabet, S.T.M.; Kamal, A.; Ahmad, J.; Ahmad, F. Convergence analysis of an iteration process for a class of generalized nonexpansive mappings with application to fractional differential equations. Discret. Dyn. Nat. Soc. 2023, 2023, 8432560. [Google Scholar] [CrossRef]
- Mekuriaw, G.; Zegeye, H.; Takele, M.H.; Tufa, A.R. Algorithms for split equality variational inequality and fixed problems. Appl. Anal. 2024, 103, 3267–3294. [Google Scholar] [CrossRef]
- Censor, Y.; Elfving, T. A multiprojection algorithm using Bregman projections in a product space. Numer. Algorithms 1994, 8, 221–239. [Google Scholar] [CrossRef]
- Censor, Y.; Gibali, A.; Reich, S. The subgradient extragradient method for solving variational inequalities in Hilbert space. J. Optim. Theory Appl. 2011, 148, 318–335. [Google Scholar] [CrossRef]
- Kraikaew, R.; Saejung, S. Strong convergence of the Halpern subgradient extragradient method for solving variational inequalities in Hilbert spaces. J. Optim. Theory Appl. 2014, 163, 399–412. [Google Scholar] [CrossRef]
- Shehu, Y. Single projection algorithm for variational inequalities in Banach spaces with application to contact problem. Acta Math. Sci. 2020, 40, 1045–1063. [Google Scholar] [CrossRef]
- Zegeye, H.; Shahzad, N. Extragradient method for solutions of variational inequality problems in Banach spaces. Abstr. Appl. Anal. 2013, 2013, 832548. [Google Scholar] [CrossRef]
- Zhu, L.J.; Liou, Y.C. A Tseng-Type algorithm with self-adaptive techniques for solving the split problem of fixed points and pseudomonotone variational inequalities in Hilbert spaces. Axioms 2021, 10, 152. [Google Scholar] [CrossRef]
- Thong, D.V.; Vuong, P.T. Modified Tseng’s extragradient methods for solving pseudo-monotone variational inequalities. Optimization 2019, 68, 2207–2226. [Google Scholar] [CrossRef]
- Polyak, B.T. Some methods of speeding up the convergence of iteration methods. Ussr Comput. Math. Math. Phys. 1964, 4, 1–17. [Google Scholar] [CrossRef]
- Kirk, W.A. Contraction Mappings and Extensions. In Handbook of Metric Fixed Point Theory; Kirk, W.A., Sims, B., Eds.; Springer: Dordrecht, The Netherlands, 2001. [Google Scholar]
- Kesornprom, S.; Cholamjiak, P. A modified inertial proximal gradient method for minimization problems and applications. AIMS Math. 2022, 7, 8147–8161. [Google Scholar] [CrossRef]
- Thong, D.V.; Cholamjiak, P.; Michael, T.; Cho, Y.J. Strong convergence of inertial subgradient extragradient algorithm for solving pseudomonotone equilibrium problems. Optim. Lett. 2022, 16, 545–573. [Google Scholar] [CrossRef]
- Zegeye, H.; Shahzad, N. Convergence of Mann type iteration method for generalized asymptotically nonexpansive mappings. Comput. Math. Appl. 2011, 62, 4007–4014. [Google Scholar] [CrossRef]
- Dotson, W., Jr. Fixed points of quasi-nonexpansive mappings. J. Aust. Math. Soc. 1972, 13, 167–170. [Google Scholar] [CrossRef]
- Boikanyo, O.A.; Zegeye, H. Split equality variational inequality problems for pseudomonotone mappings in Banach spaces. Stud. Univ. Babes-Bolyai Math. 2021, 66, 139–158. [Google Scholar] [CrossRef]
- Denisov, S.; Semenov, V.; Chabak, L. Convergence of the modified extragradient method for variational inequalities with non-Lipschitz operators. Cybern. Syst. Anal. 2015, 51, 757–765. [Google Scholar] [CrossRef]
- Xu, H.K. Iterative algorithms for nonlinear operators. J. Lond. Math. Soc. 2002, 66, 240–256. [Google Scholar] [CrossRef]
- Maingé, P.E. A hybrid extragradient-viscosity method for monotone operators and fixed point problems. SIAM J. Control Optim. 2008, 47, 1499–1515. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ahmad, K.; Shabbir, K.; Ahsan, K. A Refined Inertial-like Subgradient Method for Split Equality Problems. AppliedMath 2025, 5, 117. https://doi.org/10.3390/appliedmath5030117
Ahmad K, Shabbir K, Ahsan K. A Refined Inertial-like Subgradient Method for Split Equality Problems. AppliedMath. 2025; 5(3):117. https://doi.org/10.3390/appliedmath5030117
Chicago/Turabian StyleAhmad, Khushdil, Khurram Shabbir, and Khadija Ahsan. 2025. "A Refined Inertial-like Subgradient Method for Split Equality Problems" AppliedMath 5, no. 3: 117. https://doi.org/10.3390/appliedmath5030117
APA StyleAhmad, K., Shabbir, K., & Ahsan, K. (2025). A Refined Inertial-like Subgradient Method for Split Equality Problems. AppliedMath, 5(3), 117. https://doi.org/10.3390/appliedmath5030117