High-value-added biomolecules such as phenolic compounds and flavonoids from secondary metabolism and macromolecules such as sugars are the main constituents of several plants. Thus, this work aims to optimize the extraction of these biomolecules present in the pods of
Cassia grandis L.f. Initially, the effect of choline-based ionic liquids—ILs (choline chloride [Ch]Cl, dihydrogen citrate [Ch][DHC], and bitartrate [Ch][BIT]) as extracting agents for phenolic compounds and flavonoids was evaluated based on their efficiency and selectivity. Then, a 2
3 full factorial design with six central points was performed using the IL concentration, the solid–liquid ratio, and the temperature as independent variables. The extract obtained in the best condition was subjected to pervaporation, after which the concentrates and the crude extract were used to determine the physical properties (density, viscosity, and refractive index). The hydrophobic–hydrophilic balance of the extracting agent and the biomolecules are the extraction process’s driving force. The best extraction condition was formed by [Ch][DHC] at 15 wt%, with a solid–liquid ratio of 1:15, at 45 °C for 30 min, resulting in 153.71 ± 5.81 mg·g
−1 of reducing sugars; 483.51 ± 13.10 mg·g
−1 of total sugars; 11.79 ± 0.54 mg·g
−1 of flavonoids; and 38.10 ± 2.90 mg·g
−1 of total phenolic compounds. All the physical properties of the biomolecules are temperature-dependent; for density and refractive index, a linear correlation is observed, while for viscosity, the correlation is exponential. Increasing the temperature decreases all properties, and the extract concentration for 8× presents the highest values of density (1.283 g·cm
−3), viscosity (9224 mPa·s), and refractive index (1.467).
Full article