Effect of Process Parameters and Biomass Type on Properties of Carbon Produced by Pyrolysis
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Methods
2.3. Carbon Production
2.4. Characterization of Porous Carbon
2.5. Statistical Analyses
3. Results and Discussion
3.1. Biomass Chemical Properties
3.2. Process Optimization
3.3. Characteristics of the Carbon Produced from Cedar Wood
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Tian, W.; Zhang, H.; Duan, X.; Sun, H.; Shao, G.; Wang, S. Porous Carbons: Structure-Oriented Design and Versatile Applications. Adv. Funct. Mater. 2020, 30, 1909265. [Google Scholar] [CrossRef]
- Yang, C.; Wang, K.; Lyu, W.; Liu, H.; Li, J.; Wang, Y.; Jiang, R.; Yuan, J.; Liao, Y. Nanofibrous Porous Organic Polymers and Their Derivatives: From Synthesis to Applications. Adv. Sci. 2024, 11, 2400626. [Google Scholar] [CrossRef] [PubMed]
- Saeed, M.; Shahzad, U.; Fazle Rabbee, M.; Manzar, R.; Al-Humaidi, J.Y.; Siddique, A.; Sheikh, T.A.; Althomali, R.H.; Qamar, T.; Rahman, M.M. Potential Development of Porous Carbon Composites Generated from the Biomass for Energy Storage Applications. Chem.—Asian J. 2024, 19, e202400394. [Google Scholar] [CrossRef] [PubMed]
- Bar-On, Y.M.; Phillips, R.; Milo, R. The Biomass Distribution on Earth. Proc. Natl. Acad. Sci. USA 2018, 115, 6506–6511. [Google Scholar] [CrossRef]
- Doney, S.C.; Wolfe, W.H.; McKee, D.C.; Fuhrman, J.G. The Science, Engineering, and Validation of Marine Carbon Dioxide Removal and Storage. Annu. Rev. Mar. Sci. 2025, 17, 55–81. [Google Scholar] [CrossRef]
- Wu, H.; Cui, H.; Fu, C.; Li, R.; Qi, F.; Liu, Z.; Yang, G.; Xiao, K.; Qiao, M. Unveiling the Crucial Role of Soil Microorganisms in Carbon Cycling: A Review. Sci. Total Environ. 2024, 909, 168627. [Google Scholar] [CrossRef]
- Mesa, J.A.; Sierra-Fontalvo, L.; Ortegon, K.; Gonzalez-Quiroga, A. Advancing Circular Bioeconomy: A Critical Review and Assessment of Indicators. Sustain. Prod. Consum. 2024, 46, 324–342. [Google Scholar] [CrossRef]
- Liu, W.-J.; Jiang, H.; Yu, H.-Q. Emerging Applications of Biochar-Based Materials for Energy Storage and Conversion. Energy Environ. Sci. 2019, 12, 1751–1779. [Google Scholar] [CrossRef]
- Guo, M.; Song, W.; Tian, J. Biochar-Facilitated Soil Remediation: Mechanisms and Efficacy Variations. Front. Environ. Sci. 2020, 8, 521512. [Google Scholar] [CrossRef]
- Yu, S.; He, J.; Zhang, Z.; Sun, Z.; Xie, M.; Xu, Y.; Bie, X.; Li, Q.; Zhang, Y.; Sevilla, M.; et al. Towards Negative Emissions: Hydrothermal Carbonization of Biomass for Sustainable Carbon Materials. Adv. Mater. 2024, 36, 2307412. [Google Scholar] [CrossRef]
- Chakraborty, R.; Vilya, K.; Pradhan, M.; Nayak, A.K. Recent Advancement of Biomass-Derived Porous Carbon Based Materials for Energy and Environmental Remediation Applications. J. Mater. Chem. A 2022, 10, 6965–7005. [Google Scholar] [CrossRef]
- Xing, T.; Yun, S.; Li, B.; Wang, K.; Chen, J.; Jia, B.; Ke, T.; An, J. Coconut-Shell-Derived Bio-Based Carbon Enhanced Microbial Electrolysis Cells for Upgrading Anaerobic Co-Digestion of Cow Manure and Aloe Peel Waste. Bioresour. Technol. 2021, 338, 125520. [Google Scholar] [CrossRef]
- Hoffmann, V.; Rodriguez Correa, C.; Sachs, S.; del Pilar Sandoval-Rojas, A.; Qiao, M.; Brown, A.B.; Zimmermann, M.; Rodriguez Estupiñan, J.P.; Cortes, M.T.; Moreno-Piraján, J.C. Activated Carbon from Corncobs Doped with RuO2 as Biobased Electrode Material. Electron. Mater. 2021, 2, 324–343. [Google Scholar] [CrossRef]
- kanthi Gudimella, K.; Gedda, G.; Kumar, P.S.; Babu, B.; Yamajala, B.; Rao, B.V.; Singh, P.P.; Kumar, D.; Sharma, A. Novel Synthesis of Fluorescent Carbon Dots from Bio-Based Carica Papaya Leaves: Optical and Structural Properties with Antioxidant and Anti-Inflammatory Activities. Environ. Res. 2022, 204, 111854. [Google Scholar] [CrossRef]
- Lu, Q.; Zhou, S.; Li, B.; Wei, H.; Zhang, D.; Hu, J.; Zhang, L.; Zhang, J.; Liu, Q. Mesopore-Rich Carbon Flakes Derived from Lotus Leaves and It’s Ultrahigh Performance for Supercapacitors. Electrochim. Acta 2020, 333, 135481. [Google Scholar] [CrossRef]
- Redondo, E.; Carretero-González, J.; Goikolea, E.; Ségalini, J.; Mysyk, R. Effect of Pore Texture on Performance of Activated Carbon Supercapacitor Electrodes Derived from Olive Pits. Electrochim. Acta 2015, 160, 178–184. [Google Scholar] [CrossRef]
- Zhang, X.; Zhang, K.; Li, H.; Cao, Q.; Li, P. Porous Graphitic Carbon Microtubes Derived from Willow Catkins as a Substrate of MnO2 for Supercapacitors. J. Power Sources 2017, 344, 176–184. [Google Scholar] [CrossRef]
- Dunford, N.; Hiziroglu, S.; Holcomb, R. Effect of Age on the Distribution of Oil in Eastern Redcedar Tree Segments. Bioresour. Technol. 2007, 98, 2636–2640. [Google Scholar] [CrossRef]
- Fonts, I.; Gea, G.; Azuara, M.; Ábrego, J.; Arauzo, J. Sewage Sludge Pyrolysis for Liquid Production: A Review. Renew. Sustain. Energy Rev. 2012, 16, 2781–2805. [Google Scholar] [CrossRef]
- Jacinto, G.S.S.; Cruz, G.; Cabral, A.A.; Bezerra, G.V.P.; Peña Garcia, R.R.; Magalhães, U.N.; Gomes, W.C. Biotechnological Investigation of Pediastrum Boryanum and Desmodesmus Subspicatus Microalgae Species for a Potential Application in Bioenergy. Algal Res. 2023, 75, 103266. [Google Scholar] [CrossRef]
- Chakraborty, S.; Dunford, N.T. Algae: Nature’s Renewable Resource for Fuels and Chemicals. Biomass 2024, 4, 329–348. [Google Scholar] [CrossRef]
- Gur, C.S.; Dunford, N.T.; Gumus, Z.P. Cytotoxicity of Subcritical Water Extracts Obtained from Byproducts Generated at Commercial Pecan Shelling Operations on Cancer Cells. Bioresour. Bioprocess 2023, 10, 47. [Google Scholar] [CrossRef]
- Chakraborty, S.; Dunford, N.T.; Goad, C. A Kinetic Study of Microalgae, Municipal Sludge and Cedar Wood Co-Pyrolysis. Renew. Energy 2021, 165, 514–524. [Google Scholar] [CrossRef]
- Lutzu, G.A.; Concas, A.; Dunford, N.T. Characterization of Hypersaline Oklahoma Native Microalgae Cultivated in Flowback and Produced Water: Growth Profile and Contaminant Removal. Bioprocess Biosyst. Eng. 2024, 47, 665–681. [Google Scholar] [CrossRef] [PubMed]
- Fulgueira, C.L.; Amigot, S.L.; Gaggiotti, M.; Romero, L.A.; Basílico, J.C. Forage Quality: Techniques for Testing. Fresh Prod. 2007, 1, 121–131. [Google Scholar]
- Kouisni, L.; Paleologou, M. Method for Separating Lignin From Black Liquor. US8771464B2, 8 July 2014. [Google Scholar]
- Zhou, N.; Dunford, N.T. Characterization of Green Microalgae and Cyanobacteria Isolated from the Great Salt Plains. Trans. ASABE 2017, 60, 283–290. [Google Scholar] [CrossRef]
- Ullah, S.; Shah, S.S.A.; Altaf, M.; Hossain, I.; El Sayed, M.E.; Kallel, M.; El-Bahy, Z.M.; Rehman, A.U.; Najam, T.; Nazir, M.A. Activated Carbon Derived from Biomass for Wastewater Treatment: Synthesis, Application and Future Challenges. J. Anal. Appl. Pyrolysis 2024, 179, 106480. [Google Scholar] [CrossRef]
- Patel, H.; Mohanty, A.; Misra, M. Post-Combustion CO2 Capture Using Biomass Based Activated Porous Carbon: Latest Advances in Synthesis Protocol and Economics. Renew. Sustain. Energy Rev. 2024, 199, 114484. [Google Scholar] [CrossRef]
- Roslan, S.Z.; Zainol, M.M.; Bikane, K.; Syed-Hassan, S.S.A. Hydrothermal Carbonization of Sewage Sludge for Hydrochar Production: Optimization of Operating Conditions Using Box-Behnken Design Coupled with Response Surface Methodology. Biomass Convers. Biorefinery 2025, 15, 10109–10125. [Google Scholar] [CrossRef]
- Arroug, L.; Elaatmani, M.; Zegzouti, A. A Preliminary Study to Investigate the Beneficiation of Low-Grade Phosphate Sludge Using Reverse Flotation: Modeling and Optimization through Box-Behnken Design and Response Surface Methodology. Chem. Eng. Res. Des. 2024, 204, 228–237. [Google Scholar] [CrossRef]
- Palangi, V.; Kaya, A.; Macit, M.; Nadaroglu, H.; Ünlü, H.B.; Kaya, A.; Fekri, A.; Mammadov, A.; Lackner, M. Comparative Anti-Methanogenic Ability of Green Algae (C. reinhardtii) with/without Nanoparticles: In Vitro Gas and Methane Production. Front. Vet. Sci. 2025, 12, 1492230. [Google Scholar] [CrossRef]
- Sırakaya, S. Pros and Cons of Ulva Lactuca and Cladophora Glomerata Grown in Freshwater as Feed. Environ. Sci. Pollut. Res. 2023, 30, 33446–33454. [Google Scholar] [CrossRef]
- Lobo, R.R.; Siregar, M.U.; da Silva, S.S.; Monteiro, A.R.; Salas-Solis, G.; Vicente, A.C.S.; Vinyard, J.R.; Johnson, M.L.; Ma, S.; Sarmikasoglou, E.; et al. Partial Replacement of Soybean Meal with Microalgae Biomass on in Vitro Ruminal Fermentation May Reduce Ruminal Protein Degradation. J. Dairy Sci. 2024, 107, 1460–1471. [Google Scholar] [CrossRef] [PubMed]
- Alvarez-Guzmán, C.L.; Rodríguez-Hipólito, F.; Chávez-Reyes, Y.; Valdez-Vazquez, I. Lignocellulosic Biomass Mixtures Improve Hydrogen Production by Promoting Microbial Complementation in a Consolidated Bioprocess. J. Clean. Prod. 2025, 489, 144691. [Google Scholar] [CrossRef]
- Wang, Z.; Wang, Z.; Wang, L.; Sun, D. Ammoniation of Filter Residues from Corn Straw Filtering the Microalgae Cultured in Urine Wastewater. J. Environ. Manag. 2025, 377, 124557. [Google Scholar] [CrossRef] [PubMed]
- Diboma, B.S.; Atiotsia, V.H.; Che, L.C.; Essomba, P.B.; Bot, B.V.; Tamba, J.G. Gasification of Charcoal Derived from Tropical Wood Residues in an Updraft Fixed Bed Reactor. Bioresour. Technol. Rep. 2023, 21, 101308. [Google Scholar] [CrossRef]
- Bowles, A.J.; Nievas, Á.; Fowler, G.D. Consecutive Recovery of Recovered Carbon Black and Limonene from Waste Tyres by Thermal Pyrolysis in a Rotary Kiln. Sustain. Chem. Pharm. 2023, 32, 100972. [Google Scholar] [CrossRef]
- Adamczyk, J.; Smołka-Danielowska, D.; Krzątała, A.; Krzykawski, T. Chemical and Mineral Composition of Bottom Ash from Agri-Food Biomass Produced under Low Combustion Conditions. Int. J. Environ. Sci. Technol. 2024, 21, 4025–4036. [Google Scholar] [CrossRef]
- Zhang, H.; Li, W.; Song, G.; Azad, S.A.; Madadi, M.; Deng, Z.; Samimi, A.; Sun, C.; Sun, F. Role of in Situ Surfactant Modification of Lignin Structure and Surface Properties during Glycerol Pretreatment in Modulating Cellulase-Lignin Binding Affinities. J. Colloid Interface Sci. 2025, 687, 786–800. [Google Scholar] [CrossRef]
- Madhu, R.; Periasamy, A.P.; Schlee, P.; Hérou, S.; Titirici, M.-M. Lignin: A Sustainable Precursor for Nanostructured Carbon Materials for Supercapacitors. Carbon 2023, 207, 172–197. [Google Scholar] [CrossRef]
- Liu, L.; Gao, Y.; Meng, H.; Pan, Q.; Wang, Z.; Zhou, Y.; Liu, B.; Cao, X. Pore-Scale, Mechanical, and Hydraulic Properties of EICP-Treated Sand Using Crude Legume Ureases with Different Protein Contents. Acta Geotech. 2024, 19, 4747–4763. [Google Scholar] [CrossRef]
- Alptekin, F.M.; Dunford, N.T.; Celiktas, M.S. Miscanthus-Derived Energy Storage System Material Production. ACS Omega 2023, 8, 8779–8790. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Y.; Liu, J.; Shen, C.; Li, J.; Wang, T.; Xue, Y. Effect of Zinc Chloride-Modified Biochar with Varying Pore Structures on VOCs Inhibition and Pavement Performance of Asphalt. Constr. Build. Mater. 2025, 472, 140887. [Google Scholar] [CrossRef]
- Guo, Z.; Han, X.; Zhang, C.; He, S.; Liu, K.; Hu, J.; Yang, W.; Jian, S.; Jiang, S.; Duan, G. Activation of Biomass-Derived Porous Carbon for Supercapacitors: A Review. Chin. Chem. Lett. 2024, 35, 109007. [Google Scholar] [CrossRef]
- Kong, Z.; Zhang, H.; Zhou, T.; Xie, L.; Wang, B.; Jiang, X. Biomass-Derived Functional Materials: Preparation, Functionalization, and Applications in Adsorption and Catalytic Separation of Carbon Dioxide and Other Atmospheric Pollutants. Sep. Purif. Technol. 2025, 354, 129099. [Google Scholar] [CrossRef]
- Zhang, K.; Hu, C.; Huang, H.; Li, B.; Huang, C.; Wang, S. Achieving Efficient Energy Utilization by PCM in the Food Supply Chain: Encapsulation Technologies, Current Applications, and Future Prospects. J. Energy Storage 2024, 79, 110214. [Google Scholar] [CrossRef]
- Shih, Y.-J.; Wu, Z.-L.; Wang, M.-R.; Huang, C.-P. Catalytic Phase Transition of Cobalt Oxide Enriched in Mesoporous Carbon Polyhedrons for Electrosorption of Molybdate Oxyanions. Chem. Eng. J. 2025, 518, 164426. [Google Scholar] [CrossRef]
- Mandal, S.; Ishak, S.; Mohd Ariffin, M.A.; Lee, D.-E.; Park, T. Effect of Pore Structure on the Thermal Stability of Shape-Stabilized Phase Change Materials. J. Mater. Res. Technol. 2023, 25, 465–479. [Google Scholar] [CrossRef]
- Aktay, N. Evaluation of Low Value Lipids for Thermal Storage Applications. Master’s Thesis, Oklahoma State University, Stillwater, OK, USA, 2025. [Google Scholar]
- Thommes, M.; Kaneko, K.; Neimark, A.V.; Olivier, J.P.; Rodriguez-Reinoso, F.; Rouquerol, J.; Sing, K.S. Physisorption of Gases, with Special Reference to the Evaluation of Surface Area and Pore Size Distribution (IUPAC Technical Report). Pure Appl. Chem. 2015, 87, 1051–1069. [Google Scholar] [CrossRef]
- Chen, Y.; Yang, H.; Wang, X.; Zhang, S.; Chen, H. Biomass-Based Pyrolytic Polygeneration System on Cotton Stalk Pyrolysis: Influence of Temperature. Bioresour. Technol. 2012, 107, 411–418. [Google Scholar] [CrossRef]
Run Order | Input Pyrolysis Parameters | Pyrolysis Process Output | ||||
---|---|---|---|---|---|---|
Temperature (°C) | Hold Time (h) | Activation Ratio * | Carbon Yield (%) | Surface Area (m2/g) | Pore Volume × 106 (m3/g) | |
1 | 900 | 2 | 2 | 15.3 | 1578.6 | 1.0 |
2 | 900 | 2 | 0 | 28.3 | 215.1 | 0.15 |
3 | 900 | 1 | 1 | 21.5 | 1014.5 | 0.61 |
4 | 500 | 3 | 1 | 32.1 | 252.7 | 0.18 |
5 | 500 | 2 | 0 | 48.0 | 15.1 | 0.02 |
6 | 500 | 1 | 1 | 30.3 | 6.0 | <0.01 (0.004) |
7 | 700 | 1 | 0 | 32.0 | 17.5 | 0.02 |
8 | 700 | 2 | 1 | 26.2 | 1267.5 | 0.71 |
9 | 700 | 1 | 2 | 17.1 | 1774.6 | 1.14 |
10 | 900 | 3 | 1 | 24.7 | 969.9 | 0.6 |
11 | 500 | 2 | 2 | 19.2 | 326.95 | 0.22 |
12 | 700 | 3 | 0 | 32.5 | 27.2 | 0.03 |
13 | 700 | 2 | 1 | 24.9 | 1204 | 0.75 |
14 | 700 | 3 | 2 | 15.5 | 1952.1 | 1.24 |
15 | 700 | 2 | 1 | 24.4 | 1414.7 | 0.86 |
Biomass/Parameter | Cedar Wood | Miscanthus | Pecan Shell | Hazelnut Shell | Microalgae | Sludge |
---|---|---|---|---|---|---|
Dry matter | 92.1 | 93.6 | 86.6 | 89.3 | 79.7 | 93.7 |
ADF | 69.9 | 63 | 68.6 | 69.6 | 9.6 | ND a |
NDF | 74.7 | 83.4 | 65.9 | 67.5 | 10.4 | ND |
ADL | 28.9 | 14.1 | 42.1 | 33.9 | 1.9 | ND |
Moisture | 6.8 | 5.1 | 9 | 8.2 | 16.5 | 4.5 |
Volatile Matter | 68.5 | 75.1 | 62.5 | 62.8 | 45.6 | 52.4 |
Ash | 3.7 | 2.8 | 2.4 | 4.6 | 27.3 | 29.4 |
C | 47.8 | 46.5 | 47.7 | 46 | 25.3 | 47.8 |
H | 5.5 | 5.9 | 5.5 | 5.4 | 4.6 | 5.5 |
N | 0.6 | 0.4 | 0.9 | 1.3 | 5.4 | 0.6 |
S | 0.2 | 3 | 9 | 2.9 | 5.4 | 0.2 |
O | 42.2 | 41.4 | 34.6 | 39.8 | 32.1 | 42.2 |
Element/ Biomass | Cedar Wood | Miscanthus | Pecan Shell | Hazelnut Shell | Microalgae | Sludge |
---|---|---|---|---|---|---|
P | 220 | 610 | 640 | 50,080 | 380 | 19,590 |
Ca | 6560 | 1190 | 5760 | 1900 | 6050 | 35,680 |
K | 680 | 3050 | 5350 | 44,450 | 2040 | 3290 |
Mg | 360 | 430 | 940 | 36,540 | 590 | 5160 |
Na | 440 | 10 | 20 | 33,570 | 20 | 5370 |
S | 480 | 310 | 720 | 5160 | 310 | 17,510 |
Fe | 1622 | 26 | 675 | 555 | 24 | 13,119 |
Zn | 29 | 19 | 21 | 21 | 10 | 1124 |
Cu | 4 | - | 7 | 5 | 4 | 618 |
Mn | 158 | 176 | 119 | 21 | 78 | 471 |
B | - | - | 7 | 3 | - | 19 |
Ni | - | - | - | - | 3 | 21 |
Cr | - | - | - | - | - | 28 |
Pb | - | - | - | - | - | 49 |
Biomass Type | Temperature (°C) | Catalyst | Catalyst Ratio | Downstream Process | Surface Area (m2/g) | Pore Volume × 106 (m3/g) |
---|---|---|---|---|---|---|
Hazelnut Shell | No pyrolysis | ZnCl2 | 1:1 | Acid/water wash | 1.69 | 0.02 |
Hazelnut Shell | 450 | ZnCl2 | 1:1 | Acid/water wash | 1170.05 | 0.61 |
Hazelnut Shell | 450 | ZnCl2 | 1:1 | Water wash | 946.14 | 0.52 |
Hazelnut Shell | 600 | ZnCl2 | 1:1 | Acid/water wash | 1226.9 | 0.63 |
Hazelnut Shell | 450 | ZnCl2 | 1:4 | Acid/water wash | 1050.8 | 0.6 |
Hazelnut Shell | 600 | ZnCl2 | 1:4 | Acid/water wash | 1186.88 | 0.87 |
Hazelnut Shell | 450 | KOH | 1:1 | Acid/water wash | 343.6 | 0.21 |
Hazelnut Shell | 600 | KOH | 1:1 | Acid/water wash | 489.77 | 0.29 |
Hazelnut Shell | 450 | - | - | Acid/water wash | 103.19 | 0.07 |
Hazelnut Shell | 600 | - | - | Acid/water wash | 436.44 | 0.24 |
Hazelnut Shell | 600 | ZnCl2 | 1:2 | Acid/water wash | 1904.41 | 0.52 |
Cedar Wood | 600 | ZnCl2 | 1:2 | Acid/water wash | 1944.65 | 0.51 |
Pecan Nut Shell | 600 | ZnCl2 | 1:2 | Acid/water wash | 1346.19 | 0.35 |
Microalgae | 600 | ZnCl2 | 1:2 | Acid/water wash | 1017.74 | 0.01 |
Sludge | 600 | ZnCl2 | 1:2 | Acid/water wash | 645.57 | 0.3 |
Microalgae/Sludge /Cedar Wood Mix | 600 | ZnCl2 | 1:2 | Acid/water wash | 1236.83 | 0.62 |
Miscanthus | 600 | ZnCl2 | 1:4 | Acid/water wash | 1449 | 1.32 |
Parameter | Surface Area | Total Pore Volume | Carbon Yield | ||||
---|---|---|---|---|---|---|---|
Source | DF | F-Value | p-Value | F-Value | p-Value | F-Value | p-Value |
Model | 4 | 14.17 | 0.0 | 15.29 | 0.0 | 20.44 | <0.01 |
Linear | 3 | 15.38 | 0.0 | 16.8 | 0.0 | 55.45 | 0.0 |
Temperature | 1 | 11.96 | <0.01 | 12.37 | <0.01 | 37.48 | <0.01 |
Hold Time | 1 | 0.18 | 0.68 | 0.26 | 0.62 | 0.36 | 0.58 |
Activation Ratio | 1 | 33.99 | 0.0 | 37.77 | 0.0 | 128.52 | 0.0 |
Temperature × Temperature | 1 | 10.57 | <0.01 | 10.76 | <0.01 | 4.44 | 0.09 |
Hold Time × Hold Time | 1 | 0.91 | 0.38 | 0.55 | 0.49 | 0.57 | 0.48 |
Activation Ratio × Activation Ratio | 1 | 1.24 | 0.32 | 0.59 | 0.48 | 0.09 | 0.78 |
Temperature × Hold Time | 1 | 0.20 | 0.68 | 0.19 | 0.68 | 0.09 | 0.77 |
Temperature × Activation Ratio | 1 | 2.58 | 0.17 | 2.40 | 0.18 | 11.81 | 0.02 |
Hold Time × Activation Ratio | 1 | 0.07 | 0.81 | 0.05 | 0.82 | 0.21 | 0.67 |
Lack-of-Fit | 8 | 11.4 | 0.09 | 6.84 | 0.13 | 5.94 | 0.15 |
Process Parameter/Response | Temperature (°C) | Hold Time (h) | Activation Ratio |
---|---|---|---|
Surface Area | 774.75 | 3 | 2 |
Total Volume | 772.95 | 3 | 2 |
Yield | 500.0 | 3 | 1.66 |
Surface Area/Total Volume | 673.74 | 3 | 2 |
Surface Area/Total Volume/Yield | 774.75 | 3 | 2 |
Element | P | Ca | K | Mg | Na | S | Fe | Zn | Cu | Mn | B | Ni | Al | N | C |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Unit | (ppm) | (%) | |||||||||||||
Amount | 10 | 40 | 0 | 0 | 0 | 450 | 78 | 128 | 7 | 1 | 0 | 7 | 302 | 0.52 | 58.90 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chakraborty, S.; Aktay, N.; Alptekin, F.M.; Celiktas, M.S.; Dunford, N.T. Effect of Process Parameters and Biomass Type on Properties of Carbon Produced by Pyrolysis. Biomass 2025, 5, 52. https://doi.org/10.3390/biomass5030052
Chakraborty S, Aktay N, Alptekin FM, Celiktas MS, Dunford NT. Effect of Process Parameters and Biomass Type on Properties of Carbon Produced by Pyrolysis. Biomass. 2025; 5(3):52. https://doi.org/10.3390/biomass5030052
Chicago/Turabian StyleChakraborty, Sourabh, Nazlim Aktay, Fikret Muge Alptekin, Melih Soner Celiktas, and Nurhan Turgut Dunford. 2025. "Effect of Process Parameters and Biomass Type on Properties of Carbon Produced by Pyrolysis" Biomass 5, no. 3: 52. https://doi.org/10.3390/biomass5030052
APA StyleChakraborty, S., Aktay, N., Alptekin, F. M., Celiktas, M. S., & Dunford, N. T. (2025). Effect of Process Parameters and Biomass Type on Properties of Carbon Produced by Pyrolysis. Biomass, 5(3), 52. https://doi.org/10.3390/biomass5030052