Sunflower Seed Hulls and Meal—A Waste with Diverse Biotechnological Benefits
Abstract
1. Introduction
2. Sunflower Meal and Hull Composition
3. Valorization and Potential Applications of SM and SSHs in Industry
3.1. Corrosion Inhibitor
3.2. Concrete Stabilizer
3.3. A Source of Antioxidants
3.4. Protein Source for the Food Industry
3.5. Additive to Cultivation Media
4. Environmental Benefits of the Sunflower By-Products
4.1. Bio-Oil Production
4.2. Bio-Ethanol Production
4.3. Bioinsecticide and Fertilizer
4.4. Adsorbent
4.5. Pelletization
5. Green Methods for Extraction of Valuable Substances from Sunflower By-Products
6. Conclusions and Future Perspectives
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
Abbreviations
SM | Sunflower meal |
SSHs | Sunflower seed hulls |
SMPI | Sunflower meal protein isolate |
MAE | Microwave-assisted extraction |
US | Ultrasonication |
DESs | Deep eutectic solvents |
References
- Jaski, J.; Abrantes, K.; Zanqui, A.; Stevanto, N.; Da Silva, C.; Barao, C.; Bonfim-Rocha, L.; Cardozo-Filho, L. Simultaneous extraction of sunflower oil and active compounds from olive leaves using pressurized propane. Curr. Res. Food Sci. 2022, 5, 531–544. [Google Scholar] [CrossRef]
- Zardo, I.; Sobczyk, D.; Marczak, L.; Sarkis, J. Optimization of ultrasound-assisted extraction of phenolic compounds from sunflower seed cake using response surface methodology. Waste Biomass Valorization 2019, 10, 33–44. [Google Scholar] [CrossRef]
- Menzel, C.; González-Martínez, C.; Chiralt, A.; Chiralt, V. Antioxidant starch films containing sunflower hull extracts. Carbohydr. Polym. 2019, 214, 142–151. [Google Scholar] [CrossRef]
- Agricultural Production Statistics (2000–2022). Available online: https://www.fao.org/statistics/highlights-archive/highlights-detail/agricultural-production-statistics-(2000-2022) (accessed on 10 February 2025).
- Pickard, M.; da Silva Lima, R.; Shahidi, F. By-Product Utilization. In Bailey’s Industrial Oil and Fat Products; John Wiley & Sons Inc.: Hoboken, NJ, USA, 2020; pp. 1–10. [Google Scholar] [CrossRef]
- Kartika, I.; Pontalier, I.; Rigal, R. Twin-screw extruder for oil processing of sunflower seeds: Thermo-mechanical pressing and solvent extraction in a single step. Ind. Crops Prod. 2010, 32, 297–304. [Google Scholar] [CrossRef]
- Anal, A. Food Processing By-Products and Their Utilization; John Wiley & Sons Ltd.: Hoboken, NJ, USA, 2017; pp. 1–10. [Google Scholar] [CrossRef]
- González-Pérez, S.; Johan, M.V. Sunflower proteins: Overview of their physicochemical, structural and functional properties. J. Sci. Food Agric. 2007, 87, 2173–2191. [Google Scholar] [CrossRef]
- González-Pérez, S. Sunflower proteins. In Sunflower; AOCS Press: Urbana, IL, USA, 2015; pp. 331–393. [Google Scholar] [CrossRef]
- de Oliveira Filho, J.G.; Egea, M.B. Sunflower seed byproduct and its fractions for food application: An attempt to improve the sustainability of the oil process. J. Food Sci. 2021, 86, 1497–1510. [Google Scholar] [CrossRef]
- Georgieva, P.; Bozadzhiev, B.; Koleva, L.; Pishtiyski, I. Characterization of sunflower materials as sources for production of protein isolates. In Proceedings of the Scientific Works of UFT, Plovdiv, Bulgaria, 19–20 October 2012; pp. 128–132. [Google Scholar]
- Salim, R.; Nehvi, I.B.; Mir, R.A.; Tyagi, A.; Ali, S.; Bhat, O.M. A review on anti-nutritional factors: Unraveling the natural gateways to human health. Front. Nutr. 2023, 10, 1215873. [Google Scholar] [CrossRef]
- Subaşı, B.; Vahapoğlu, B.; Capanoglu, E.; Mohammadifar, M. A review on protein extracts from sunflower cake: Techno-functional properties and promising modification methods. Crit. Rev. Food Sci. Nutr. 2022, 62, 6682–6697. [Google Scholar] [CrossRef] [PubMed]
- Wanjari, N.; Waghmare, J. Phenolic and antioxidant potential of sunflower meal. Adv. Appl. Sci. Res. 2015, 6, 221–229. [Google Scholar]
- Pickard, M.D.; da Silva Lima, R.S.; Shahidi, F. By-product utilization. In Bailey’s Industrial Oil and Fat Products, 7th volume, 7th ed.; John Wiley and Sons Inc.: Hoboken, NJ, USA, 2005; Volume 4, pp. 391–416. [Google Scholar]
- Santana-Gálvez, J.; Cisneros-Zevallos, L.; Jacobo-Velázquez, D. Chlorogenic Acid: Recent Advances on Its Dual Role as a Food Additive and a Nutraceutical against Metabolic Syndrome. Molecules 2017, 22, 358. [Google Scholar] [CrossRef] [PubMed]
- Martínez, G.; Regente, M.; Jacobi, S.; Rio, M.; Pinedo, M.; Canal, L. Chlorogenic acid is a fungicide active against phytopathogenic fungi. Pestic. Biochem. Physiol. 2017, 140, 30–35. [Google Scholar] [CrossRef]
- Weisz, G.; Rolf, D.; Kammerer, D.R.; Carle, R. Identification and quantification of phenolic compounds from sunflower (Helianthus annuus L.) kernels and shells by HPLC-DAD/ESI-MSn. Food Chem. 2009, 115, 758–765. [Google Scholar] [CrossRef]
- Kreps, F.; Vrbiková, L.; Schmidt, S. Industrial Rapeseed and Sunflower Meal as Source of Antioxidants. Int. J. Eng. Res. Appl. 2014, 4, 45–54. [Google Scholar]
- Rodríguez, M.; Nolasco, S.M.; Izquierdo, N.G.; Mascheroni, R.H.; Sanchez Madrigal, M.; Chávez Flores, D.; Quintero Ramos, A. Microwave-assisted extraction of antioxidant compounds from sunflower hulls. Heat Mass Transf. 2019, 55, 3017–3027. [Google Scholar] [CrossRef]
- Hassannejad, H.; Nouri, A. Sunflower seed hull extract as a novel green corrosion inhibitor for mild steel in HCl solution. J. Mol. Liq. 2018, 254, 377–382. [Google Scholar] [CrossRef]
- Shcherban’, E.; Stel’makh, S.; Beskopylny, A.; Mailyan, L.; Meskhi, B.; Chernil’nik, A.; El’shaeva, D.; Pogrebnyak, A.; Yaschenko, R. Influence of Sunflower Seed Husks Ash on the Structure Formation and Properties of Cement Concrete. Civ. Eng. J. 2024, 10, 1475–1493. [Google Scholar] [CrossRef]
- Stel’makh, S.; Beskopylny, A.; Shcherban, A.; Mailyan, E.; Meskhi, L.; Shilov, B.; El’shaeva, A.; Chernil’nik, D.; Kurilova, S. Alteration of Structure and Characteristics of Concrete with Coconut Shell as a Substitution of a Part of Coarse Aggregate. Materials 2023, 16, 4422. [Google Scholar] [CrossRef]
- Tanase, C.; Coșarcă, S.; Muntean, D.-L. A Critical Review of Phenolic Compounds Extracted from the Bark of Woody Vascular Plants and Their Potential Biological Activity. Molecules 2019, 24, 1182. [Google Scholar] [CrossRef]
- Lattanzio, V.; Lattanzio, V.; Cardinali, A. Role of phenolics in the resistance mechanisms of plants against fungal pathogens and insects. Res. Signpost 2006, 661, 23–67. [Google Scholar]
- De Leonardis, A.; Macciola, V.; Di Domenico, N. A first pilot study to produce a food antioxidant from. Eur. J. Lipid Sci. Technol. 2005, 107, 220–227. [Google Scholar] [CrossRef]
- Kachrimanidou, V.; Kopsahelis, N.; Alexandri, M.; Strati, A.; Gardeli, C.; Papanikolaou, S.; Komaitis, M.; Kookos, I.; Koutinas, A. Integrated sunflower-based biorefinery for the production of antioxidants, protein isolate and poly(3-hydroxybutyrate). Ind. Crops Prod. 2015, 71, 106–113. [Google Scholar] [CrossRef]
- Laguna, O.; Odinot, E.; Bissoto, A.; Barea, B.; Villeneuve, P.; Sigollot, J.-C.; Record, E.; Faulds, C.; Fine, F.; Lesage-Meesen, L.; et al. Release of phenolic acids from sunflower and rapeseed meals using different carboxylic esters hydrolases from Aspergillus niger. Ind. Crops Prod. 2019, 139, 111579. [Google Scholar] [CrossRef]
- Valdés, A.; Mellinas, A.; Ramos, M.; Garrigós, М.; Alfonso, J. Natural additives and agricultural wastes in biopolymer formulations for food packaging. Front. Chem. 2014, 2, 6. [Google Scholar] [CrossRef] [PubMed]
- Jeya Jeevahan, J.; Chandrasekaran, M.; Venkatesan, S.; Sriram, V.; Britto, J.; Mageshwaran, D.; Durairaj, R. Scaling up difficulties and commercial aspects of edible films for food packaging: A review. Trends Food Sci. Technol. 2020, 100, 210–222. [Google Scholar] [CrossRef]
- Salgado, P.; Fernández, G.; Silvina, R.; Mauri, A. Addition of bovine plasma hydrolysates improves the antioxidant properties of soybean and sunflower protein-based films. Food Hydrocoll. 2011, 25, 1433–1440. [Google Scholar] [CrossRef]
- Salgado, P.; López-Caballero, M.; Gómez-Guillén, M.; Mauri, A.; Montero, M. Sunflower protein films incorporated with clove essential oil have potential application for the preservation of fish patties. Food Hydrocoll. 2013, 33, 74–84. [Google Scholar] [CrossRef]
- Dainelli, D.; Gontard, N.; Spyropoulos, D.; Beuken, E.; Tobback, P. Active and intelligent food packaging: Legal aspects and safety concerns. Trends Food Sci. Technol. 2008, 19, S103–S112. [Google Scholar] [CrossRef]
- Huang, M.; Wang, H.; Xu, X.; Lu, X.; Song, X.; Zhou, G. Effects of nanoemulsion-based edible coatings with composite mixture of rosemary extract and ε-poly-l-lysine on the shelf life of ready-to-eat carbonado chicken. Food Hydrocoll. 2020, 102, 105576. [Google Scholar] [CrossRef]
- Zhang, D.; Bi, W.; Kai, K.; Ye, Y.; Liu, J. Effect of chlorogenic acid on controlling kiwifruit postharvest decay caused by Diaporthe sp. LWT 2020, 132, 109805. [Google Scholar] [CrossRef]
- Gaur, S.; Agnihotri, R. Green tea: A novel functional food for the oral health of older adults. Geriatr. Gerontol. Int. 2014, 14, 238–250. [Google Scholar] [CrossRef]
- Petti, S.; Scully, C. Polyphenols, oral health and disease: A review. J. Dent. 2009, 37, 413–423. [Google Scholar] [CrossRef] [PubMed]
- Zaky, A.; Hussein, A.; Mostafa, S.; Abd El-Aty, A. Impact of Sunflower Meal Protein Isolate Supplementation. Separations 2022, 9, 429. [Google Scholar] [CrossRef]
- Meng, X.; Slominski, B.A. Affected by a Multicarbohydrase Preparation of Cell Wall Degrading Enzymes. Poult. Sci. 2005, 4, 1242–1251. [Google Scholar] [CrossRef]
- Saeed, M.; Cheryan, M. Sunflower Protein Concentrates and Isolates’ Low in Polyphenols and Phytate. J. Food Sci. 1988, 53, 1127–1131. [Google Scholar] [CrossRef]
- Manchuliantsau, A.; Tkacheva, A. Upcycling Solid Food Wastes and By-Products into Human Consumption Products. US Patent 20190223475A1, 25 July 2019. [Google Scholar]
- Gatta, C.; Piergiovanni, A. Technological and nutritional aspects in hyperproteic bread prepared with the addition of sunflower meal. Food Chem. 1996, 57, 493–496. [Google Scholar] [CrossRef]
- Grasso, S.; Liu, S.; Methven, L. Quality of muffins enriched with upcycled defatted sunflower seed flour. LWT 2020, 119, 108893. [Google Scholar] [CrossRef]
- Song, N.-B.; Song, H.-Y.; Jo, W.-S.; Song, K. Physical properties of a composite film containing sunflower seed meal protein and its application in packaging smoked duck meat. J. Food Eng. 2013, 116, 789–795. [Google Scholar] [CrossRef]
- Andrade, T.; Arbach, C.; Garcia, A.; Domingues, L.; Marinho, T.; Nabeshima, E.; Ramirez, B.; Pacheko, M. Exploring new plant-based products: Acceptance of sunflower meal as a protein source in meat alternative products. Food Res. Int. 2025, 209, 116158. [Google Scholar] [CrossRef] [PubMed]
- Harnack, L.; Mork, S.; Valluri, S.; Weber, C.; Schmitz, K.; Stevenson, J.; Pettit, J. Nutrient composition of a selection of plant-based ground beef alternative products available in the United States. J. Acad. Nutr. Diet. 2021, 121, 2401–2408. [Google Scholar] [CrossRef] [PubMed]
- Giacalone, D.; Clausen, M.; Jaeger, S. Understanding barriers to consumption of plant-based foods and beverages: Insights from sensory and consumer science. Curr. Opin. Food Sci. 2022, 48, 100919. [Google Scholar] [CrossRef]
- Minakov, D. Influence of Ecological and Biochemical Parameters of Bioconversion of Plant Raw Materials on the Yield of Biomass of Fruiting Bodies of Xylotrophic Basidiomycetes. Ph.D. Thesis, Tomsk State University, Tomsk, Russia, 2018. [Google Scholar]
- Sysoeva, M.; Prozoreva, I.; Sysoeva, E. Study of the process of solid-phase cultivation of higher fungi on milled sunflower seeds hulls for the obtaining of composite materials. Chem. Plant Raw Mater. 2024, 3, 313–319. [Google Scholar] [CrossRef]
- Gonzales-Matute, R.; Figlas, D.; Curvetto, N. Sunflower seed hull based compost for Agaricus blazei Murrill cultivation. Int. Biodeterior. Biodegrad. 2010, 64, 742–747. [Google Scholar] [CrossRef]
- Gonzales-Matute, R.; Figlas, D.; Devalis, R.; Delmastro, S.; Curvetto, N. Sunflower seed hulls as a main nutrient source for cultivating Ganoderma lucidum. Micol. Apl. Int. 2002, 14, 19–24. [Google Scholar]
- Figlas, N.; Gonzalez-Matute, R.; Curvetto, N. Sunflower seed hull: Its value as a broad mushroom substrate. J. Food Process. Preserv. 2016, 8, 1–7. [Google Scholar]
- Casoni, A.; Bidegain, M.; Cubitto, M.; Curvetto, N.; Volpe, M. Pyrolysis of sunflower seed hulls for obtaining bio-oils. Bioresour. Technol. 2015, 177, 406–409. [Google Scholar] [CrossRef] [PubMed]
- Casoni, A.; Gutierrez, V.; Volpe, M. Conversion of sunflower seed hulls, waste from edible oil production, into valuable products. J. Environ. Chem. Eng. 2019, 7, 102893. [Google Scholar] [CrossRef]
- Sharma, S.; Kalra, K.; Kocher, G. Fermentation of enzymatic hydrolysate of sunflower hulls for ethanol production and its scale-up. Biomass Bioenergy 2004, 27, 399–402. [Google Scholar] [CrossRef]
- Telli-Okur, M.; Eken-Saraçoğlu, N. Fermentation of sunflower seed hull hydrolysate to ethanol by Pichia stipitis. Bioresour. Technol. 2008, 99, 2162–2169. [Google Scholar] [CrossRef]
- Urrutia, R.; Aagaard, T.; Gutierrez, V.; Gonz’alez, J.; Frechero, M.; Volpe, M. Co-production of bioinsecticide and biochar from sunflower edible oil waste: A preliminary feasibility study. Bioresour. Technol. Rep. 2024, 26, 101836. [Google Scholar] [CrossRef]
- Ninkov, J.; Jakšić, S.; Nenin, P.; Gvozdenović, M.; Mijić, B.; Radović, B.; Milić, S. Waste ashes from burned sunflower hulls as new fertilising materials. Environ. Eng. 2024, 10, 19–23. [Google Scholar] [CrossRef]
- Sang, Y.; Chen, H.; Khalifeh, M.; Li, Y. Catalysis and chemistry of lignin depolymerization in alcohol solvents—A review. Catal. Today 2023, 408, 168–181. [Google Scholar] [CrossRef]
- Jemli, S.; Vieira, Y.; Chamtouri, F.; Silva, L.; Oliveira, M.; Amara, F.; Bejar, S.; Vizzotto, B.; Wahab, R.; Irshad, S.; et al. Development of sunflower seed hulls crosslinked β-cyclodextrin (SFSH-β-CD) composite materials for green adsorption of phenol and naphthenic acid. J. Environ. Chem. Eng. 2025, 13, 115419. [Google Scholar] [CrossRef]
- Stanković, S.; Šoštarić, T.; Bugarčić, M.; Janićijević, A.; Pantović-Spajić, K.; Lopičić, Z. Adsorption of Cu(II) ions from synthetic solution by sunflower seed husks. Acta Period. Technol. 2019, 50, 268–277. [Google Scholar] [CrossRef]
- Tadayon, Y.; Bahrololoom, M.; Javadpour, S. An experimental study of sunflower seed husk and zeolite as adsorbents of Ni(II) ion from industrial wastewater. Water Resour. Ind. 2023, 30, 100214. [Google Scholar] [CrossRef]
- Rojas, R.; Morillo, J.; Usero, J.; Vanderlinden, E.; Bakouri, H. Adsorption study of low-cost and locally available organic substances and a soil to remove pesticides from aqueous solutions. J. Hydrol. 2015, 520, 461–472. [Google Scholar] [CrossRef]
- Kocadagistan, B.; Kocadagistan, E. The effects of sunflower seed shell modifying process on textile dye adsorption: Kinetic, thermodynamic and equilibrium study. Desalination Water Treat. 2016, 57, 3168–3178. [Google Scholar] [CrossRef]
- Ferreira, I.; Wernke, J.; Diório, A.; Bergamasco, R.; Vieira, M. Sunflower seed husks as a cost-effective adsorbent for chloroquine removal from water. Braz. J. Environ. Sci. 2024, 59, 1907. [Google Scholar] [CrossRef]
- Bridgewater, T. Review of fast pyrolysis of biomass and product upgrading. Biomass Bioenergy 2012, 38, 68–94. [Google Scholar] [CrossRef]
- Jung, Y.; Kim, K. Acidic Pretreatment. In Pretreatment of Biomass: Processes and Technologies; Elsevier: Amsterdam, The Netherlands, 2015; Volume 3, pp. 27–50. [Google Scholar] [CrossRef]
- Nitsos, C.; Mihailof, C.; Matis, K.; Lappas, A.; Triantafyllidis, K. Chapter 7—The Role of Catalytic Pretreatment in Biomass Valorization Toward Fuels and Chemicals. In The Role of Catalysis for the Sustainable Production of Bio-Fuels and Bio-Chemicals; Elsevier: Amsterdam, The Netherlands, 2013; Volume 223, pp. 217–260. [Google Scholar] [CrossRef]
- Himmel, M.; Ding, S.; Johnson, D.; Adney, W.; Nimlos, M.; Brady, J. Biomass Recalcitrance: Engineering Plants and Enzymes for Biofuels Production. Science 2007, 315, 804–807. [Google Scholar] [CrossRef]
- Guo, S.; Jiang, Y.; Liu, T.; Zhao, J.; Huang, J.; Fang, Y. Investigations on interactions between sodium species and coal char by thermogravimetric analysis. Fuel 2018, 214, 561–568. [Google Scholar] [CrossRef]
- Olsson, L.; Hahn-Hagerdal, B. Fermentation of lignocellulosic hydrolysates for ethanol production. Enzym. Microb. Technol. 1996, 18, 312–331. [Google Scholar] [CrossRef]
- Li, L.; Yao, Z.; You, S.; Wang, C.; Chong, C.; Wang, X. Optimal design of negative emission hybrid renewable energy systems with biochar production. Appl. Energy 2019, 243, 233–249. [Google Scholar] [CrossRef]
- Guo, X.; Liu, H.; Zhang, J. The role of biochar in organic waste composting and soil improvement: A review. Waste Manag. 2020, 102, 884–899. [Google Scholar] [CrossRef]
- Midassi, S.; Bedoui, A.; Bensalah, N. Efficient degradation of chloroquine drug by electro-Fenton oxidation: Effects of operating conditions and degradation mechanism. Chemosphere 2020, 260, 127558. [Google Scholar] [CrossRef]
- Nguyen, T.; Nguyen, T.; Chen, W.; Chen, C.; Patel, A.; Bui, X.; Chen, L.; Singhania, R.; Dong, C. Phosphoric acid-activated biochar derived from sunflower seed husk: Selective antibiotic adsorption behavior and mechanism. Bioresour. Technol. 2023, 371, 128593. [Google Scholar] [CrossRef]
- Nippes, R.; Macruz, P.; Silva, G.; Scaliante, M. A critical review on environmental presence of pharmaceutical drugs tested for the covid-19 treatment. Process Saf. Environ. Prot. 2021, 152, 568–582. [Google Scholar] [CrossRef]
- Alhares, H.; Shaban, M.; Salman, M.; Ridha, M.M.; Mohammed, S.; Abed, K.; Ibrahim, M.; Al-Banaa, A.; Hasan, H. Sunflower Husks Coated with Copper Oxide Nanoparticles for Reactive Blue 49 and Reactive Red 195 Removals: Adsorption Mechanisms, Thermodynamic, Kinetic, and Isotherm Studies. Water Air Soil Pollut. 2023, 234, 35. [Google Scholar] [CrossRef]
- Delgado, N.; Capparelli, A.; Navarro, A.; Marino, D. Pharmaceutical emerging pollutants removal from water using powdered activated carbon: Study of kinetics and adsorption equilibrium. J. Environ. Manag. 2019, 236, 301–308. [Google Scholar] [CrossRef]
- Taoufik, N.; Boumya, W.; Janani, F.; Elhalil, A.; Mahjoubi, F.; Barka, N. Removal of emerging pharmaceutical pollutants: A systematic mapping study review. J. Environ. Chem. Eng. 2020, 8, 104251. [Google Scholar] [CrossRef]
- Azargohar, R.; Soleimani, M.; Nosran, S.; Bond, T.; Karunakaran, C.; Dalai, A.; Tabil, L. Thermo-physical characterization of torrefied fuel pellet from co-pelletization of canola hulls and meal. Ind. Crops Prod. 2018, 128, 424–435. [Google Scholar] [CrossRef]
- Mostafa, M.; Hu, S.; Wang, Y.; Su, S.; Hu, X.; Elsayed, S.; Xiang, J. The significance of pelletization operating conditions: An analysis of physical and mechanical characteristics as well as energy consumption of biomass pellets. Renew. Sustain. Energy Rev. 2019, 105, 332–348. [Google Scholar] [CrossRef]
- Dai, X.; Theppitak, S.; Yoshikawa, K. Pelletization of Carbonized Wood Using Organic Binders with Biomass Gasification Residue as an Additive. Energy Fuels 2018, 33, 323–329. [Google Scholar] [CrossRef]
- Cui, X.; Yang, J.; Shi, X.; Lei, W.; Huang, T.; Bai, C. Pelletization of Sunflower Seed Husks: Evaluating and Optimizing Energy Consumption and Physical Properties by Response Surface Methodology (RSM). Processes 2019, 7, 591. [Google Scholar] [CrossRef]
- Shuur, B.; Brouwer, T.; Smink, D.; Sprakel, L. Green solvents for sustainable separation processes. Curr. Opin. Green Sustain. Chem. 2019, 18, 67–75. [Google Scholar] [CrossRef]
- Nkhili, E.; Tomao, V.; Hajji, H.; Boustani, E.-S.; Chemat, F.; Dangles, O. Microwave-assisted water extraction of green tea polyphenols. Phytochem. Anal. 2009, 20, 408–415. [Google Scholar] [CrossRef]
- Oroian, M.; Escriche, I. Antioxidants: Characterization, natural sources, extraction and analysis. Food Res. Int. 2015, 74, 10–36. [Google Scholar] [CrossRef]
- Kumar, M.; Dahuja, A.; Sachdev, A.; Kaur, C.; Varghese, E.; Sahak, S.; Sairam, K. Valorisation of black carrot pomace: Microwave assisted extraction of bioactive phytoceuticals and antioxidant activity using Box–Behnken design. J. Food Sci. Technol. 2019, 56, 995–1007. [Google Scholar] [CrossRef] [PubMed]
- Elhag, H.; Naila, A.; Nour, A.; Ajit, A.; Sulaiman, A.; Abd Aziz, B. Optimization of protein yields by ultrasound assisted extraction from Eurycoma longifolia roots and effect of agitation speed. J. King Saud. Univ.—Sci. 2019, 31, 913–930. [Google Scholar] [CrossRef]
- Mintah, B.; He, R.; Dabbour, M.; Xiang, J.; Akomeah, A.; Ma, H. Techno-functional attribute and antioxidative capacity of edible insect protein preparations and hydrolysates thereof: Effect of multiple mode sonochemical action. Ultrason. Sonochemistry 2019, 58, 104676. [Google Scholar] [CrossRef]
- Ali, M.; Khalil, M.; Badawy, W.; Hellwig, M. Ultrasonic treatment as a modern technique to facilitate the extraction of phenolic compounds from organic sunflower seed cakes. J. Sci. Food Agric. 2023, 104, 2245–2251. [Google Scholar] [CrossRef]
- Bashir, I.; Dar, A.; Dash, K.; Pandey, V.; Fayaz, U.; Shams, R.; Srivastava, R.; Singh, R. Deep eutectic solvents for extraction of functional components from plant-based products: A promising approach. Sustain. Chem. Pharm. 2023, 33, 101102. [Google Scholar] [CrossRef]
- Paiva, A.; Craveiro, R.; Aroso, I.; Martins, M.; Reis, R.; Duarte, A. Natural Deep Eutectic Solvents—Solvents for the 21st Century. ACS Sustain. Chem. Eng. 2014, 2, 10663–11071. [Google Scholar] [CrossRef]
- Shikov, A.; Obluchinskaya, E.; Flisyuk, E.; Terninko, I.; Generalova, Y.; Pozharitskaya, O. The impact of natural deep eutectic solvents and extraction method on the co-extraction of trace metals from Fucus vesiculosus. Mar. Drugs 2022, 20, 324. [Google Scholar] [CrossRef] [PubMed]
- Shikov, A.; Shikova, V.; Whaley, A.; Burakova, M.; Flisyuk, E.; Whaley, A.; Terninko, I.; Generalova, Y.; Gravel, I.; Pozharitskaya, O. The Ability of Acid-Based Natural Deep Eutectic Solvents to Co-Extract Elements from the Roots of Glycyrrhiza glabra L. and Associated Health Risks. Molecules 2022, 27, 7690. [Google Scholar] [CrossRef] [PubMed]
- Bezerra, F.; Ramos, G.; Carvalho, M.; Koblitz, M. Natural deep eutectic solvents characteristics determine their extracting and protective power on chlorogenic acids from sunflower meal. Sustain. Chem. Pharm. 2024, 37, 101430. [Google Scholar] [CrossRef]
- Becze, A.; Senila, M.; Senila, L.; Dordai, L.; Cadar, O.; Fuss-Babalau, V.; Roman, M.; Levei, L.; Uiuiu, P.; Naghiu, M. Optimization of protein extraction from sunflower meal using taguchi design and regression modeling for human nutrition applications. Foods 2025, 14, 2415. [Google Scholar] [CrossRef]
Amino Acid | Lys | Met + Cys | Tre | Ile | Leu | Phe + Tyr | Val | Asp | Ser | Glu | Pro | Gly | Ala | His | Arg |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Quantity (g/g protein) | 3.55 | 3.45 | 3.78 | 2.54 | 6.44 | 7.05 | 3.26 | 10.05 | 5.15 | 24.62 | 5.81 | 6.99 | 5.94 | 3.37 | 7.99 |
Amino Acid | Lys | Phe + Tyr | Met + Cys | Leu | Ile | Val | His | Thr |
---|---|---|---|---|---|---|---|---|
Content, mg/g protein | 9.5 | 21.4 | 8.5 | 17.2 | 11.4 | 14.3 | 6.7 | 11.3 |
Sunflower By-Product | Alternative Application | Technology | Operating Conditions | Yield/Result | Reference |
---|---|---|---|---|---|
SSHs | bio-oil production | pyrolysis | 400 °C | 34 wt% | [53,54] |
SSHs | biofuel production | enzymatic hydrolysis (Tricoderma reesei); fermentation (S. cerevisiae var. ellipsoideus) | 30 °C | 0.452 g·g−1 | [55] |
acid hydrolysis (0.7 M H2SO4 at 90 °C); fermentation (Pichia stipitis) | 30 °C | 0.32 g·g−1 | [56] | ||
SSHs | corrosion inhibitor | absorption on the metal surface | HCl, 400 ppm inhibitor | inhibition efficiency—98.5% | [21] |
SSHs | concrete stabilizer | mixture of cement, SSH ash, sand, crushed stone, water, microsilica, plasticizer additive | not applicable | compressive strength of the investigated concrete increased by 14.89%, | [22] |
SM | protein source | blend of SM protein and wheat | supplementation with 3, 6, and 9% SM protein isolate | improved protein content | [38] |
hyperproteic bread prepared with the addition of SM | addition of 5–20% SM | a bread with a remarkable content of trypsin inhibitors | [42] | ||
sunflower protein films incorporated with clove essential oil | agitation for 30 min; room temperature | increased in vitro antioxidant and antimicrobial film properties | [32] | ||
SSHs | source of antioxidants | extraction of total phenolics and their incorporation in starch films | 80% aqueous methanol | starch films with antioxidant activity | [3] |
extraction of phenols; recovery of caffeic acid | ethanol/water 60:40 (v/v) and acetone/water 60:40 (v/v) mixtures | 90 mg of powdery antioxidant product, consisting of 58% caffeic acid | [26] | ||
SSHs | additive to cultivation media | a supplement for fungal growth | 27 °C, pH = 6 | durable packing composite material | [49] |
SSHs | bioinsecticide | pyrolysis | 450 °C | 45% | [57] |
SSHs | soil fertilizer | sunflower in the form of ash | not applicable | meets the requirements for industrial fertilizer; pH should be neutralized | [58] |
SSHs | adsorbent | adsorption of different hazardous substances | natural/chemically tested SSHs | purifies water | [59,60,61,62,63,64,65] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tsvetanova, F.; Naydenova, G.; Boyadzhieva, S. Sunflower Seed Hulls and Meal—A Waste with Diverse Biotechnological Benefits. Biomass 2025, 5, 47. https://doi.org/10.3390/biomass5030047
Tsvetanova F, Naydenova G, Boyadzhieva S. Sunflower Seed Hulls and Meal—A Waste with Diverse Biotechnological Benefits. Biomass. 2025; 5(3):47. https://doi.org/10.3390/biomass5030047
Chicago/Turabian StyleTsvetanova, Flora, Greta Naydenova, and Stanislava Boyadzhieva. 2025. "Sunflower Seed Hulls and Meal—A Waste with Diverse Biotechnological Benefits" Biomass 5, no. 3: 47. https://doi.org/10.3390/biomass5030047
APA StyleTsvetanova, F., Naydenova, G., & Boyadzhieva, S. (2025). Sunflower Seed Hulls and Meal—A Waste with Diverse Biotechnological Benefits. Biomass, 5(3), 47. https://doi.org/10.3390/biomass5030047