Previous Issue
Volume 4, June
 
 

Clocks & Sleep, Volume 4, Issue 3 (September 2022) – 4 articles

  • Issues are regarded as officially published after their release is announced to the table of contents alert mailing list.
  • You may sign up for e-mail alerts to receive table of contents of newly released issues.
  • PDF is the official format for papers published in both, html and pdf forms. To view the papers in pdf format, click on the "PDF Full-text" link, and use the free Adobe Readerexternal link to open them.
Order results
Result details
Section
Select all
Export citation of selected articles as:
Review
The Effect of Light Therapy on Electroencephalographic Sleep in Sleep and Circadian Rhythm Disorders: A Scoping Review
Clocks & Sleep 2022, 4(3), 358-373; https://doi.org/10.3390/clockssleep4030030 - 09 Aug 2022
Viewed by 151
Abstract
Light therapy is used to treat sleep and circadian rhythm disorders, yet there are limited studies on whether light therapy impacts electroencephalographic (EEG) activity during sleep. Therefore, we aimed to provide an overview of research studies that examined the effects of light therapy [...] Read more.
Light therapy is used to treat sleep and circadian rhythm disorders, yet there are limited studies on whether light therapy impacts electroencephalographic (EEG) activity during sleep. Therefore, we aimed to provide an overview of research studies that examined the effects of light therapy on sleep macro- and micro-architecture in populations with sleep and circadian rhythm disorders. We searched for randomized controlled trials that used light therapy and included EEG sleep measures using MEDLINE, PubMed, CINAHL, PsycINFO and Cochrane Central Register of Controlled Trials databases. Five articles met the inclusion criteria of patients with either insomnia or delayed sleep–wake phase disorder (DSWPD). These trials reported sleep macro-architecture outcomes using EEG or polysomnography. Three insomnia trials showed no effect of the timing or intensity of light therapy on total sleep time, wake after sleep onset, sleep efficiency and sleep stage duration compared to controls. Only one insomnia trial reported significantly higher sleep efficiency after evening light therapy (>4000 lx between 21:00–23:00 h) compared with afternoon light therapy (>4000 lx between 15:00–17:00 h). In the only DSWPD trial, six multiple sleep latency tests were conducted across the day (09:00 and 19:00 h) and bright light (2500 lx) significantly lengthened sleep latency in the morning (09:00 and 11:00 h) compared to control light (300 lx). None of the five trials reported any sleep micro-architecture measures. Overall, there was limited research about the effect of light therapy on EEG sleep measures, and studies were confined to patients with insomnia and DSWPD only. More research is needed to better understand whether lighting interventions in clinical populations affect sleep macro- and micro-architecture and objective sleep timing and quality. Full article
(This article belongs to the Section Impact of Light & other Zeitgebers)
Show Figures

Figure 1

Article
Prediction of Dropout in a Randomized Controlled Trial of Adjunctive Light Treatment in Patients with Non-Seasonal Depression and Evening Chronotype
Clocks & Sleep 2022, 4(3), 346-357; https://doi.org/10.3390/clockssleep4030029 - 27 Jul 2022
Viewed by 265
Abstract
The current study examined the possible predictors of dropout during a five-week light treatment (LT) with a gradual advance protocol in 93 patients with unipolar non-seasonal depression and evening chronotypes by comparing their clinical characteristics and performing a logistic regression analysis. Nineteen out [...] Read more.
The current study examined the possible predictors of dropout during a five-week light treatment (LT) with a gradual advance protocol in 93 patients with unipolar non-seasonal depression and evening chronotypes by comparing their clinical characteristics and performing a logistic regression analysis. Nineteen out of ninety-three (20%) subjects (80% female, 46.5 ± 11.7 years old) dropped out during the 5-week light treatment. Treatment non-adherence (i.e., receiving LT for less than 80% of the prescribed duration) over the first treatment week predicted a five-fold increase in risk of dropout during light therapy (OR: 5.85, CI: 1.41–24.21) after controlling for potential confounders, including age, gender, treatment group, rise time at the baseline, patient expectation, and treatment-emergent adverse events. There is a need to incorporate strategies to enhance treatment adherence and retention in both research and clinical settings. Chinese clinical trial registry (ChiCTR-IOR-15006937). Full article
(This article belongs to the Special Issue Light, Sleep and Human Health II)
Show Figures

Figure 1

Article
Noradrenergic Signaling in Astrocytes Influences Mammalian Sleep Homeostasis
Clocks & Sleep 2022, 4(3), 332-345; https://doi.org/10.3390/clockssleep4030028 - 07 Jul 2022
Viewed by 458
Abstract
Astrocytes influence sleep expression and regulation, but the cellular signaling pathways involved in these processes are poorly defined. We proposed that astrocytes detect and integrate a neuronal signal that accumulates during wakefulness, thereby leading to increased sleep drive. Noradrenaline (NA) satisfies several criteria [...] Read more.
Astrocytes influence sleep expression and regulation, but the cellular signaling pathways involved in these processes are poorly defined. We proposed that astrocytes detect and integrate a neuronal signal that accumulates during wakefulness, thereby leading to increased sleep drive. Noradrenaline (NA) satisfies several criteria for a waking signal integrated by astrocytes. We therefore investigated the role of NA signaling in astrocytes in mammalian sleep. We conditionally knocked out (cKO) β2-adrenergic receptors (β2-AR) selectively in astrocytes in mice and recorded electroencephalographic and electromyographic activity under baseline conditions and in response to sleep deprivation (SDep). cKO of astroglial β2-ARs increased active phase siesta duration under baseline conditions and reduced homeostatic compensatory changes in sleep consolidation and non-rapid eye movement slow-wave activity (SWA) after SDep. Overall, astroglial NA β2-ARs influence mammalian sleep homeostasis in a manner consistent with our proposed model of neuronal–astroglial interactions. Full article
(This article belongs to the Section Animal Basic Research)
Show Figures

Figure 1

Article
Adipokines in Sleep Disturbance and Metabolic Dysfunction: Insights from Network Analysis
Clocks & Sleep 2022, 4(3), 321-331; https://doi.org/10.3390/clockssleep4030027 - 22 Jun 2022
Viewed by 525
Abstract
Adipokines are a growing group of secreted proteins that play important roles in obesity, sleep disturbance, and metabolic derangements. Due to the complex interplay between adipokines, sleep, and metabolic regulation, an integrated approach is required to better understand the significance of adipokines in [...] Read more.
Adipokines are a growing group of secreted proteins that play important roles in obesity, sleep disturbance, and metabolic derangements. Due to the complex interplay between adipokines, sleep, and metabolic regulation, an integrated approach is required to better understand the significance of adipokines in these processes. In the present study, we created and analyzed a network of six adipokines and their molecular partners involved in sleep disturbance and metabolic dysregulation. This network represents information flow from regulatory factors, adipokines, and physiologic pathways to disease processes in metabolic dysfunction. Analyses using network metrics revealed that obesity and obstructive sleep apnea were major drivers for the sleep associated metabolic dysregulation. Two adipokines, leptin and adiponectin, were found to have higher degrees than other adipokines, indicating their central roles in the network. These adipokines signal through major metabolic pathways such as insulin signaling, inflammation, food intake, and energy expenditure, and exert their functions in cardiovascular, reproductive, and autoimmune diseases. Leptin, AMP activated protein kinase (AMPK), and fatty acid oxidation were found to have global influence in the network and represent potentially important interventional targets for metabolic and sleep disorders. These findings underscore the great potential of using network based approaches to identify new insights and pharmaceutical targets in metabolic and sleep disorders. Full article
(This article belongs to the Section Computational Models)
Show Figures

Figure 1

Previous Issue
Back to TopTop